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Abstract 

The rise in cyberattacks over the past two decades spurred interest in policies 
improving cybersecurity. One focus of that research is how to create incentives 
for software vendors to release updates fixing vulnerabilities in their software. An 
important consideration that has received far less attention in this literature is 
understanding if software users install available software updates promptly and 
the factors that may increase or decrease their responsiveness. In this paper, we 
empirically investigate the propensity of firms to install software updates on the 
servers running their websites. We compiled a dataset tracking the server software 
used by over 150,000 medium and large firms in the United States to host their 
websites between 2000 and 2018. Treating the discovery of security 
vulnerabilities in the server software as quasi-natural experiments, we examine if 
and when firms update their server software after the vendors of that software 
disclose vulnerabilities. We uncover widespread usage of software with severe 
security vulnerabilities, with nearly 76% of the firms analyzed forgoing installing 
software updates that fixed severe security vulnerabilities found in their software 
for at least six months after the release of such updates. Using hazard model 
analysis that accounts for firms having different organizational routines for 
updating, we document that usage of cloud-based platforms for hosting websites 
can decrease the time to installing updates, that technical complexity on sites 
slows updating, and that the disclosure of severe vulnerability fixes in software 
updates does not jolt firms into installing them. Finally, we discuss how the 
relative inattentiveness of firms to act on software update releases should be 
incorporated into the design of cybersecurity policies. 
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1. Introduction 
Over the past twenty years, cyberattacks on companies have increased. An industry 

survey in 2021 of Chief Information Security Officers found that the vast majority saw an 

increase in disruptive cyberattacks within the past year (EY Americas, 2021). Many cyberattacks 

exploit vulnerabilities in the software running on servers, the computers that host companies’ 

websites. These events garner media attention and spur calls for increased investment and 

diligence in cybersecurity from policymakers (Barrett, 2018). In response, strategy and 

information systems scholars have explored and analyzed policies aimed at improving 

cybersecurity.  

Most of the policies considered in this literature emphasize providing incentives for 

software vendors to build secure software and to release software updates fixing security 

vulnerabilities, known as patches, in a timely manner. These policies include encouraging 

vendors to produce higher quality software by making software vendors liable for the cost that 

users face from installing patches (August and Tunca, 2011),1 encouraging vendors to more 

quickly release updates and patches by mandating the public disclosure of security vulnerabilities 

(Arora, Telang, and Xu, 2008), and decreasing the potential for malicious actors to learn from 

the vulnerability disclosures and patches by carefully limiting the frequency vendors release 

patches and the amount of information that software vendors disclose about vulnerabilities 

(Rescorla, 2004; Mitra and Ransbotham, 2015). 

With its focus on incentivizing software vendors to provide software updates, the current 

literature has largely taken for granted that software users will adopt and install these updates 

when available.2 And yet, many cyberattacks are successful partly because companies neglected 

to install available software updates that addressed security vulnerabilities in the server software 

they were using (Ranger, 2019).3 For example, in 2017, the UK's National Health Service fell 

 
1 August and Tunca (2011) study the provisioning of patches in an environment with profit-maximizing software 
vendors. In the setting we study, the software is open source and created by a collective of volunteers and a non-
profit foundation. Thus, charging the “software vendor” for patch costs is not possible. 
2 Most of the papers cited anticipate that some portion of software users will install available updates. While the 
fraction of users that install these updates are sometimes a parameter of the models studied, to our knowledge, no 
other paper has attempted to estimate the heterogeneity in that parameter or the dynamics of how users install 
updates over time. 
3 Other examples include Bank of America’s ATMs being out-of-service and Continental Airline’s flight being 
cancelled due to cyberattacks exploiting unpatched vulnerabilities that were more than six months old (Baroudi 
Bloor, 2003). 
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victim to a cyberattack that exploited a vulnerability in their server software for which a software 

update had been available—but not installed—for over a month (Acronis International, 2017; 

Palmer, 2017). The cyberattack resulted in the cancellation of thousands of operations, including 

those of emergency patients. In the same year, a breach of Equifax, which exposed the private 

information of over 143 million individuals, occurred when hackers exploited a vulnerability in 

the server software hosting the Equifax website for which a patch had been available for two 

months (Goodin, 2017). In 2018, the city of Atlanta suffered a hacking incident, halting many of 

the city’s departments and operations. Following the incident, an audit found 1,500 to 2,000 

vulnerabilities in the city’s system, with some of the vulnerabilities being present in their system 

since almost a year prior (Harvey, 2018; Goldenberg and Zlatev, 2022).  

Furthermore, many of the cybersecurity policies that create incentives for software 

vendors to release patches are designed according to expectations about the rate at which 

software users will install those updates. Given that malicious actors are given a running start 

from the time a vulnerability is announced to when a firm implements the update, mandating the 

disclosure of software vulnerabilities to incentivize software vendors to release updates more 

quickly may ultimately be detrimental to cybersecurity if firms are unlikely to install the updates 

promptly (Arora et al., 2006; Choi et al., 2010).4 Therefore, to fully analyze and optimize 

cybersecurity policies, we need an understanding of software users’ decisions regarding software 

updates. 

To do so, in this paper we empirically investigate the extent to which companies install 

available software updates on their servers, the extent to which companies leave their web server 

software insecure by forgoing available software updates, and why some companies are faster at 

adopting and installing software updates than others. Leveraging detailed data on the server 

software used to host the websites of over 150,000 U.S. medium to large companies and 

organizations between 2000 and 2018, we analyze the frequency and timing of when those 

organizations installed available software updates to their server software. We focus on 

 
4 Arora, Nandkumar, and Telang (2006) is a good example of the need for empirical evidence of software users’ 
uptake of updates. In their study considering policies related to the release of patches, they note that the release of 
software patches may increase the exploitation of vulnerabilities if software users do not install the updates. In the 
case where users are inattentive to updates, releasing fewer or more limited software updates may be optimal. By 
providing evidence on software user adoption of patches, we help fill the literature gap identified in their paper. 
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organizations that use the Apache web server, the most popular web server software deployed in 

use globally, for hosting their websites. 

Web server software offers a valuable lens for understanding software improvements and 

cybersecurity. Web servers are ubiquitous and critical to the modern web-based commercial 

Internet. Millions of firms in the United States and hundreds of millions across the globe use web 

servers to support billions of web pages, including those serving sensitive financial and personal 

information (Greenstein and Nagle, 2014). Therefore, highlighting the prevalence of 

vulnerabilities and the instigators of installing updates can improve cybersecurity. Besides the 

cybersecurity benefits, many server software updates include features and bug fixes that improve 

the experience of Internet users. Therefore, increasing the speed that companies adopt software 

updates could also support economic growth and an improved user experience. 

The Apache Web Server, the focus of this study, is the most popular web server software 

globally and is used by millions of businesses to support their websites. Besides its importance 

because of its widespread use, Apache is ideal for our study because detailed information about 

its versions, updates, and vulnerabilities is publicly available. During the period studied in this 

article, 28 severe vulnerabilities and 130 less severe vulnerabilities were discovered in the 

Apache software. Each vulnerability reported to Apache was scored along multiple dimensions 

that are visible to us. In addition, 115 software updates for the Apache server software were 

released during that same time. Each of these updates was released along with a list of the 

security vulnerabilities being corrected, the bugs fixed, and the new features included in the 

update. Finally, as Apache is open source, each update was made freely available to anyone 

online. Therefore, our analysis of the timing of installing these software updates is not 

confounded by the pricing of the software or the availability of its software updates.  

Our unique dataset that tracks the server software was culled from raw data from the 

Internet Archive’s Wayback Machine, which has routinely visited millions of websites every 

month and recorded the content and metadata about that site, including the name and version 

number of the server software hosting each website. By tracking the server software being used 

to host each organization’s website over time, we can observe when an organization updates its 

server software and when it chooses to forgo updating and continue using the aging or vulnerable 

software. 
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Our analysis proceeds along three lines. First, we assess how common security 

vulnerabilities are in the server software of organizations using Apache. We find widespread use 

of server software with severe security vulnerabilities. Between 2000 and 2018, nearly 60% of 

the organizations in our dataset had a publicly disclosed security vulnerability on their server. In 

some months, such as October 2004, nearly every Apache webserver hosting the organization 

homepages in our sample operated with a publicly disclosed severe security vulnerability. This 

finding suggests that opportunities for cyberattacks are alarmingly numerous. 

Second, we document the cross-sectional characteristics of organizations that are more 

likely to install an Apache server software update following its release using a sequential logit 

estimation procedure. We find that 76% of organizations with severe vulnerabilities in our data 

do not install readily available server software updates even six months after their release. After 

controlling for a variety of characteristics of the organizations, we find that few observables can 

account for the variation in organizations’ response to released software updates. Instead, 

unobservable and persistent differences in organizations are the primary drivers of different 

approaches to updates. 

Lastly, we explore the time dimension of our data and document the characteristics of 

organizations and attributes of the Apache software updates associated with organizations being 

faster or slower to install those updates over time. Using a survival model with time-varying 

covariates, we find that organizations with technically complex websites are slower to update 

when new versions are released. At the same time, those using cloud-hosting services are 

quicker. We also demonstrate that organizations are more deliberate in installing major version 

updates and updates filled with new features than minor updates or updates exclusively fixing 

security vulnerabilities. 

Our work fills both a conceptual and an empirical gap in the cybersecurity literature. 

Previous works about cybersecurity and software updates have primarily focused on software 

vendors (Arora, Nandkumar, and Telang, 2006; Arora, Telang, and Xu, 2008; August and Tunca, 

2011; Mookerjee et al., 2011; Mitra and Ransbotham, 2015). With some exceptions, the models 

presented in these papers treat software users as homogenous and portray software users’ 

decisions regarding when to install updates as deterministic or a function of update quality. And 

yet, software vendors and users share responsibility for cybersecurity: vendors provision patches, 

but software users decide when to install those patches. Therefore, the behavior of software users 
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regarding whether and when to install software updates can play an important role in determining 

how to optimize the cybersecurity policies considered in the previous literature. Indeed, in their 

study on the tradeoffs of mandating faster disclosure of software vulnerabilities, Arora, 

Nandkumar, and Telang (2006) acknowledged that releasing a patch could increase the number 

of cyberattacks and cited empirically understanding the factors that hasten or slow user-patching 

as a promising area for future research. 

We contribute conceptually by describing and ultimately empirically estimating a simple 

model of companies’ decisions regarding installing server software updates. Similar to the 

framework presented by Dey et al. (2015), our model builds on the long-noticed phenomenon 

that there is considerable heterogeneity in the regular updating cycle and firms’ approaches to 

installing software updates (Arbaugh, Fithen, and McHugh, 2000). Some companies routinely 

update their server software, while others have a more ad-hoc approach to updating. In addition, 

among companies that wish to eventually adopt software updates, a variety of frictions and costs 

can cause delays in installing those updates (Baroudi Bloor, 2003; Dissanayake et al., 2022; 

August and Tunca, 2006; August et al., 2014; Kang, 2022).5 Therefore, our paper describes a 

two-stage decision for companies: firms choose a routine with regard to updates—which could 

be to always update immediately, never update, or update after a waiting period—and those who 

choose to install updates, also decide how long to wait until they install a particular update. 

Unlike Dey et al. (2015), our model maps closely to a sequential logit setup, allowing us to 

empirically estimate which organizational characteristics are associated with different 

approaches to updating and which attributes of patches are associated with faster diffusion and 

adoption. 

We also contribute by filling an empirical gap in the literature. Our analysis is one of the 

first to document and analyze the heterogeneity in server software-updating decisions across a 

wide range of companies and organizations over a long time period. Previous works recognized 

 
5 Kang (2022) emphasizes user incentives for upgrading enterprise software with many complements and the costs 
of accounting for such operational complexity. In a for-profit setting, August et al. 2014 investigate optimal trade-
offs between the cloud-supported provision of upgrades or on-premise upgrades in the face of heterogeneous user 
valuation of quality. For-profit firms target their promotions to segments that demand low, medium, or high security, 
depending on the risks and costs of alternatives. Relatedly, August and Tunca, 2006 analyze incentives to patch in 
both a for-profit and free setting, assuming that upgrade behavior reflects forward-looking incentives but ignores 
externalities on others. In the for-profit environment, incentives to fix are too low, requiring vendor subsidies to 
induce optimal behavior. With freeware, the incentives are too low (high) when the risks and costs are minor 
(significant).  
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that firms did not immediately install patches after their release. For example, Arbaugh et al. 

(2000) found instances of servers being hacked using vulnerabilities patched two years prior. But 

that analysis was conditioned on successfully exploiting the vulnerability to detect that a 

vulnerability had not been patched. Our data allows us to see how many companies operate with 

vulnerabilities, putting them at-risk regardless of whether or not those vulnerabilities are 

ultimately exploited. Furthermore, to our knowledge, only two prior empirical research studies 

have examined longitudinal investment in cybersecurity and linked it to outcomes. Li et al. 

(2021) examined hospital adoption of security software and investment in related activities, 

while Liu et al. (2020) examined higher education and governance and associated actions. Both 

papers link these security investments to the propensity to suffer a security incident as well as 

exogenous organizational features and processes, using cross-sectional variance to infer causal 

determinants.6 Our study takes a different approach, leveraging the quasi-random discovery of 

vulnerabilities and our longitudinal data to gain causal inference. In addition, our study looks at 

an extended nearly 20-year period, organizations across different industries, in addition to the 

attributes of the software updates themselves.7 

The findings from our work also connect with the vast literature measuring the quantity 

and quality of IT and its impact on the productivity of organizations (Jorgensen, 2005; Jorgensen 

et al., 2016; Brynjolfsson and Hitt, 2003; Tambe and Hitt, 2012). Researchers have found 

persistent differences across organizations in the investments in and returns from IT (Foster et 

al., 2001; Aral et al., 2006).8 Our prior work (Murciano-Goroff et al., 2021) made a direct link 

with productivity analysis. It showed that high productivity correlates with high-quality web 

software, which arises at firms that upgrade more frequently and maintain software close to the 

frontier. In contrast, in the present study, we link upgrading behavior to a new valuable outcome, 

cybersecurity vulnerabilities, which has yet to be a focus of prior productivity analysis. Similar 

to patterns identified in previous research, we find persistent differences across firms in IT 

investment behavior, which motivates analyzing the determinants of firm heterogeneity in 

 
6 Li (2021) stresses the returns at organizations that invest in on-premises processes, such as anti-virus, intrusion 
detection, and authentication. Liu (2020) found behavior consistent with a tradeoff between granting autonomy and 
flexibility in using information systems and enforcing standardized, organization-wide security protocols—the more 
complex the computing environment, the higher the returns on centralized governance that limits vulnerabilities. 
7 This include the number of new features, bug fixes, severe and non-severe vulnerabilities fixed in each update. 
8 Some of this variance can be explained by the differences in returns related to the size and scale of 
implementations and strategic investments that enable leadership persistence (McElheran, 2015; Besen and Righi, 
2019; Tambe et al., 2020; Zolas et al., 2020). 
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investment in software quality. Unlike that work, we focus our analysis on user responsiveness to 

announcements, the availability of patches, and the causal determinants of the variance in 

upgrade activity. 

Finally, our results have important implications for companies as well as policymakers. 

In the final section of this article, we discuss some of those implications. In particular, given that 

the majority of firms are predominantly inattentive to vulnerability disclosures, releasing 

software updates with less information about the vulnerabilities inside may be socially efficient. 

Furthermore, we argue that more attention should be paid within firms to how technical 

complexity can inhibit firms from staying secure. Automating updating, such as services 

provided through cloud providers, could help. 

2. Setting 
In this section, we describe how software vendors receive reports of vulnerabilities and 

create software updates to fix those vulnerabilities. We also provide a simple model of how 

software users respond to the availability of new software updates, including the decisions of 

whether to install software updates and, if installing them, how quickly to adopt these software 

updates. 

2.1. Reported, Disclosed, and Fixed Vulnerabilities 

Our study examines organizations using server software, a particular type of computer 

program that enables users to host a website. When an individual visits an organization’s 

website, the individual’s computer sends a request to that organization’s server. The server 

processes the request using server software that determines which content to send back to the 

individual. For example, after an individual connects to Amazon.com, the Amazon server 

software determines which products and prices to display to that individual. Similarly, after an 

individual connects to their bank’s website, the server software determines who the individual is, 

what information they should or should not have access to from the bank’s database, and what 

transactions that user should be allowed or not allowed to make. 

Because server software plays these critical roles in guarding and transmitting sensitive 

data, server software vendors have developed procedures for finding and fixing security 

vulnerabilities. Software vendors typically accept reports from users about bugs and potential 
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security vulnerabilities. Teams of security experts vet these submissions, known as reported 

vulnerabilities. Many software vendors also submit these bugs to the National Institute of 

Standards and Technology (NIST) to be scored based on the potential of that vulnerability to 

harm users.9 The bugs that score “high” for their impact on the security of software and for their 

exploitability we call severe security bugs. These bugs harm an organization’s system's quality 

and security for two reasons. First, these bugs are easily exploitable. According to the scoring 

system, most severe security bugs do not require local access to the system to perform the attack; 

attackers can perform the attack over the network and often need no or little authentication for 

accessing and exploiting the vulnerability. Moreover, once exploited, these bugs can result in 

significant losses. These include and are not limited to a partial or total disclosure of user 

information, a modification of some or all of the system’s files, reduced performance, or a 

complete system shutdown (Mell et al., 2007). 

After evaluating a reported vulnerability, software vendors decide when to disclose that 

vulnerability to the public. Vendors often initially keep reported vulnerabilities secret from the 

public, so malicious actors are not tipped off about their existence. When software vendors 

believe it is prudent to do so, they publicly acknowledge the vulnerability. We refer to these as 

disclosed vulnerabilities. Vendors disclose these vulnerabilities when it is essential to warn their 

users about security risks to encourage them to monitor their systems more carefully or to take 

mitigating actions, such as updating their software. Finally, software vendors develop, and 

release updates that fix the vulnerabilities, and software users decide whether and when to install 

it.10 At that point, the vulnerabilities are called fixed vulnerabilities.11 To decrease the probability 

that malicious actors exploit a bug, software vendors often release software updates and disclose 

vulnerabilities simultaneously. 

 
9 The National Institute of Standards and Technology (NIST) maintains the National Vulnerabilities Database 
(NVD). When a bug is reported, it is entered in the NVD, and a score is computed based on the Common 
Vulnerability Scoring System (CVSS). https://nvd.nist.gov/vuln-metrics/cvss# 
10 While this is the process that most software vendors hope will occur, some bugs are discovered and handled 
outside this procedure. In particular, some bugs are discovered when a user notices and discusses problems with the 
program without knowing the situation, indicating an underlying vulnerability. In those cases, the date the bug is 
discovered and the date the vendor publicly acknowledges the vulnerability may be the same. In addition, the vendor 
may acknowledge the bug before a software update is ready to be released. In addition, proprietary server software, 
such as the Microsoft IIS server software, automatically “pushes” updates to some users. 
11 The statement of this process is available on the website of the Apache Software Foundation Security Team at 
https://www.apache.org/security/. To the best of our knowledge, the overview of this process has stayed the same 
since the early days of the Apache Software Foundation. 
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We focus our analysis on the web server software, Apache, and the organization that 

supports it, the Apache Foundation, who follows the above outlined process for handling reports 

of bugs and security vulnerabilities. The Apache software descended from the first web server, 

built on the new diffusing World Wide Web, released by Tim Berners-Lee in 1991. In 1993, the 

National Center for Supercomputing Applications (NCSA) at the University of Illinois 

developed a computer program called the NCSA HTTPd server. The HTTPd server software 

supported sharing content on the web through the Hypertext Transfer Protocol (HTTP). NCSA 

made HTTPd available as shareware within academic and research settings, along with the 

underlying code. HTTPd’s adoption spread quickly, partly because the servers did not restrict the 

usage or modification of the software. Many web administrators took advantage by adding 

improvements as needed or communicating with the lead programmer, Robert McCool, who 

coordinated adding and releasing extensions. When, in the spring of 1994, McCool left the 

University to become one of the first ten employees of the newly founded Netscape, the 

development of the web server software fragmented with eight different teams working on eight 

distinct vintages of the software. In 1995, the eight teams decided to coordinate their efforts into 

one server known as Apache (ostensibly because it was “a patchy web server”). The University 

of Illinois then transferred the server software development to the Apache organization without 

licensing or restrictions. Apache subsequently grew in popularity as the commercial internet 

grew, becoming widely used. Today, the Apache Foundation coordinates the development of the 

Apache server software, receives reports of vulnerabilities, and orchestrates the disclosure of 

vulnerabilities and the release of software updates to mitigate those vulnerabilities. 

2.2. Server Software Users’ Response to Software Updates 

In this section, we sketch a simple model of organizations’ response to the release of 

software updates fixing security vulnerabilities in server software. 

When a software update becomes available for the server software that an organization 

uses to host their website, the organization chooses whether or not to install that update.12 

Drawing on prior research, we posit that each organization chooses a baseline regarding security 

 
12 Organizations employ technical staff to maintain IT infrastructure, including the server software for hosting the 
organizations’ websites. IT decisions are typically made by individual server administrators within organizational 
contexts. Decisions about installing, updating, and changing server software are an interplay of individual and 
organizational-level factors. This paper discusses server administrators and organizations interchangeably as 
decision-makers regarding server software.  
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and software updating practices (Dey et al., 2015; Dissanayake et al., 2022). For some firms, this 

baseline may be to keep their software at the technological and security frontier by immediately 

installing updates and security patches as they become available. These firms we dub the 

Frontier Chasers (FC). Other firms choose a baseline rate of update that largely ignores 

available software updates. We call these firms the Do-Nothing (DN) firms. Once firms opt into 

either an FC or DN updating routine, their behavior when software updates become available is 

deterministic. 

Firms that opt not to install updates immediately after their release and yet do intend to 

install the updates eventually, we call Do-Something (DS) organizations. These organizations 

must decide how long to wait following the release of a software update until their organization 

installs the update. 

Which routine an organization chooses—FC, DN, or DS—may be a function of many 

complex factors, including organizational capital, management practices, and cybersecurity 

human capital. Furthermore, the organization’s geographic location may influence local labor 

market conditions and the costs of hiring labor to operate a process. 

Costs and benefits influence both the baseline updating routine of an organization and the 

responsiveness of an organization to the release of software updates.13  

The costs affiliated with installing software updates may derive from the frictions that the 

organizations encounter when updating. For example, if administrators must multitask across a 

large set of operational needs, then updating the Apache server may involve time and high 

opportunity costs (Dissanayake, et al, 2022). If an organization has been operating for longer, 

administrators may inherit configurations that accumulate myopic decisions from the past. If, 

however, a server is hosted on a cloud provider, such as Amazon Web Services (AWS), 

administrators may find it less costly to manage the transition from one software version to 

another. In addition, the technical complexity of an organization’s IT operations is likely to be 

associated with organizations being less responsive to changes in known vulnerabilities in 

software. Websites and other IT infrastructures that depend on large numbers of interconnected 

 
13 This conceptualization parallels the rational inattention framework applied to organizations (Matějka and McKay, 
2015). Much like that literature, organizations have a baseline propensity towards an action, updating. In addition, 
each organization has factors that influence their attentiveness to new information, namely responsiveness to the 
presence of bugs in their software and the release of new software versions.  
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or interdependent technologies are more challenging to update.14 They require more forethought 

and planning to avoid introducing incompatibilities when transitioning software versions. 

Because of that friction, more technically complex IT infrastructures are less likely to respond 

quickly to discover vulnerabilities.15 

As for the benefits from installing software updates, these may include direct benefits, 

such as faster loading times for their site or the ability to display and deploy frontier web apps 

that engage users. For example, deploying servers to support Web 2.0 applications may motivate 

upgrades. These updates may also decrease the probability of security breaches. The prominence 

of an organization’s homepage is also likely to increase the benefits of being responsive to the 

discovery of cybersecurity vulnerabilities. Highly trafficked websites are also more likely to be 

targeted by hackers. Finally, the ability of a website to conduct e-commerce and financial 

transactions also correlates with the benefits of updating after the announcement of cybersecurity 

vulnerabilities in software. Cybercriminals are likely to target sites that collect and store financial 

records. So, server administrators at organizations with such sensitive data are also more likely to 

watch carefully for updates patching security vulnerabilities. 

Figure 1 summarizes our basic model of the sequential decisions of firms following the 

release of a server software update. 

3. Data and Sample Construction 
3.1. Key samples and data sources 

We combine two data sources to construct our first key sample, a broad panel that tracks 

Apache server software used by medium to large organizations in the United States between 

2000 and 2018.  This sample is suitable for a census of usage and vulnerabilities in the user base 

over time. 

 
14 If updates have the potential to disrupt organizations’ servers, then organizations with lower probabilities of being 
targeted by cyberattacks may feel inclined to delay installing updates until other organizations have attempted to do 
so. In this way, organizations may be free-riding on other organizations being first-movers and figuring out how to 
mitigate any negative impacts from installing updates (Hui-Wen and Png, 1994). 
15 Rather than attempting to install all available updates and patches, organizations may attempt to prioritize 
vulnerabilities with higher exploitability. Previous research has provided models of what such a prioritization 
strategy could be (Jacobs et al, 2020). In Appendix A4, we examine if our results appear different when focusing 
exclusively on highly exploitable vulnerabilities. 
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To construct this sample, we first collected information on all organizations in the Bureau 

van Dijk Mint Global database with at least 50 employees located in the United States, and 

listing a website. For each organization in this database, the data provides information about the 

estimated number of employees, the industry of the organization, and the geographic region in 

which the organization operates.16 

We then found and extracted information on the web server software used by each of the 

organizations in our Mint Global data in each month between 2000 and 2018 from the Internet 

Archive (IA) Wayback Machine. The IA is a non-profit organization that has routinely scanned 

millions of publicly facing websites for the past two decades and taken snapshots of the content 

on those sites. When connecting to a website, the server software that hosts the site will respond 

with both the content of the site as well as metadata about the server and software hosting the 

website. This metadata often contains the vendor of the server software hosting a site and the 

server software version number (e.g., Apache 1.3.6).17 The responding server also communicates 

its IP address, which is a sequence of numbers that indicates where the server hosting a website 

was located. The IA collected and stored the metadata and IP addresses for every website they 

scanned, and every time they scanned each site. Using the list of organizations and their web 

addresses from Mint Global, we found the associated sites in the IA data, extracted the metadata 

from each time the IA connected with that site, and parsed the metadata for the server software 

and version numbers. In addition, we also examined the IP addresses of each website, as 

recorded in the IA data. Using a list of all IP addresses associated with Amazon Web Services 

(AWS), Microsoft Azure, and Google Cloud Platform, we flag if the servers hosting an 

organization’s website were located on the  cloud at a given time. 

We combine these two sources of raw data into a broad, monthly panel dataset of Apache 

web server users by keeping observations of organization-months that used Apache web server 

software. In total, this panel contains close to 5 million organization-month observations of 

 
16 An organization in our dataset is mapped to a website domain. If two organizations have the same website 
domain, they are treated as part of the same organization. 
17 Users have a choice regarding how much information their server response headers show about their web servers, 
ranging from showing the full information including the vendor, version, and operating system to showing no 
information at all. Setting anything less than showing the server vendor and version is not recommended. As the 
Apache Foundation puts it, “…[Obscuring server header] makes it more difficult to debug interoperational 
problems. Also note that disabling the Server header does nothing at all to make your server more secure. The idea 
of ‘security through obscurity’ is a myth and leads to a false sense of safety.” See: 
https://httpd.apache.org/docs/2.4/mod/core.html#servertokens. 
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Apache server usage from 150,854 organizations between 2000 and 2018. This panel 

corresponds to the data item shown in Table 1 Row (i)(a). 

To enable our analysis of user decisions, we need to be able to precisely determine the 

time of update, we therefore construct a restricted panel of Apache users that were frequently 

captured by the IA from our broad panel. This restricted panel will allow us to determine when 

an organization installed a new version based on when the server version number changes 

between adjacent observations. For this panel, we keep the subset of organizations from the 

broad panel that had their website scanned by the IA at least every three months on average. The 

IA was not able to scan every website every single month. By focusing on organizations that 

have their website scanned regularly, we can reasonably precisely observe the time when an 

organization installs a software update. We include only organizations with at least ten months of 

observed Apache usage. As Apache makes a new minor release every 4.5 months on average, the 

restriction ensures that we observe organizations’ updating decisions over at least two average 

software release cycles. We also drop an observation if the specific scan of the website by the IA 

and the following scan for that website are more than 4.5 months apart. Finally, we do not 

include the first observed Apache updating cycle and the last observation of Apache usage of an 

organization to adjust for censoring observations of a website. After these restrictions, our 

restricted panel of Apache users with frequent captures contains around three million 

organization-month observations from 70,092 U.S. organizations between 2000 and 2018. This 

panel corresponds to the data item in Table 1 Row (i)(b). 

Given that we can precisely detect the time software update happens in our restricted 

panel, we can construct several different outcome variables for this dataset. The first one is the 

variable 𝑢𝑝𝑑𝑎𝑡𝑒𝑑!", which is a binary that equals 1 if organization 𝑖 makes an update in month 𝑡. 

An update happens in month 𝑡 either when the organization uses a higher major version in the 

next observed month18 or when the organization uses a higher minor version in the next observed 

month.19 Another outcome variable is a “time-to-event” variable  𝑡𝑖𝑚𝑒𝑇𝑜𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑜𝑛𝑡ℎ𝐸𝑛𝑑!", 

which captures the number of months since organization 𝑖’s previous update of Apache server 

software.  

 
18 E.g. the organization uses Apache 2.2 then changes to Apache 2.4. 
19 E.g. the organization uses Apache 2.2.10 then changes to Apache.2.2.11. 
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Moreover, we can construct variables that capture an organization’s historical updating 

behavior. We construct 𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! and 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟!, which are binary 

variables that capture how frequently an organization 𝑖 updated its Apache server software in its 

first nine observed months. If it did not update at all, the variable 𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! is equal 

to 1. If it updated twice or more, the variable 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! is equal to 1.20 

For each observation in our broad and restricted panels, we match the Apache server 

software version an organization’s website is using with information about that software version 

from the Apache Software Foundation and the National Vulnerability Database (NVD). The 

Apache Foundation and the NVD contain detailed information about each version of Apache 

software and every vulnerability in each version. This includes the degree and severity of 

security vulnerabilities, the date vulnerabilities were reported to the Apache Foundation, the date 

those vulnerabilities were disclosed to the public, and the date of the release of new versions that 

fix each vulnerability. For each organization-month observation in our panel, we check if the 

server software version contained a reported, disclosed, or fixed severe security vulnerability at 

that time. We also checked if a newer server software version had been released and if that 

version was considered a major or a minor update. Finally, we also parse the Apache software 

“changelogs,” which are documents summarizing the changes made in a software version update 

for the number of severe and non-severe security vulnerabilities fixed and the number of new 

and improved features added to the software. The information we obtained from the Apache 

Foundation and the NVD correspond to data items (ii)—(v) in Table 1. 

Merging information from the Apache Foundation and the NVD to our panels allows us 

to construct a range of variables that describe the vulnerability and quality status of an 

organization’s server software in a month. ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" captures whether the version of the 

software in use had publicly disclosed severe security vulnerabilities. 

𝑤𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑒𝑀𝑜𝑛𝑡ℎ𝑠𝑆𝑖𝑛𝑐𝑒𝐴𝑑𝑑𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔!" is a binary which is equal to 1 if the version in use 

had additional severe security vulnerabilities disclosed within three months before month 𝑡. 

𝑛𝑒𝑤𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" captures whether newer versions of Apache server software, major or 

minor, to what organization 𝑖 was using in month 𝑡, were available. 

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" captures whether newer minor versions of Apache server 

 
20 The two variables are undefined for the first nine observations of Apache usage of each organization because 
those observations are used to construct the variables. 
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software were available. 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!" captures the number of severe security 

vulnerabilities the oldest newer minor version (if one was available) fixed. If no newer minor 

version was available for organization 𝑖 in month 𝑡, this variable is set to zero. Similarly, 

𝑛𝑜𝑛𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!" captures the number of nonsevere bugs the oldest newer minor version 

fixed, and 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠!" captures the number of feature changes the oldest newer minor 

version has, if such a version was available.  

Building on our restricted panel, we also create a cross-sectional dataset that we call the 

release window cross section. This dataset tracks the decisions of organizations during six-month 

windows following the releases of Apache software updates that fixed severe security 

vulnerabilities. An observation in this dataset is an organization during one of these six-month 

windows. The Apache version in use at this organization at the beginning of the six-month 

window must have severe security vulnerabilities that the new release fixed. The dataset contains 

161,106 observations for 55,558 organizations during 15 unique six-month release windows.21 

The outcome of interest from this dataset is whether the organization, faced with the release of 

an update that fixed severe vulnerabilities in its used version, chose to chase the frontier, do 

something, or do nothing.22 This cross-sectional dataset corresponds to the data item in Table 1 

Row (vi). 

3.2. Additional Covariates 

We augment our key datasets with additional variables from various other data sources.  

To gauge the amount of traffic an organization’s website received, we obtained website 

traffic rankings from Alexa for the top one million websites each year between 2010 and 2018. 

We match the organizations in our sample with the Harte Hanks database to capture the 

scale and complexity of an organization’s IT operations. This database contains information such 

as the number of personal computers owned by the organization, the number of IT staff, the IT 

budget, and the software budget in 2017. We also manage to obtain, for a fraction of the 

 
21 We only include releases that fixed severe security vulnerabilities and that were at least six months apart from the 
next such releases to enable us to observe organizations’ decisions with respect to the given releases over a 
reasonably long duration. 
22 We define the frontier chasers to be organizations who updated within two months following the release, do-
something organizations to be those who updated within six months, and do-nothing organizations to be those who 
did not update within six months.  
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organizations, whether they have outsourced their IT operations sometime between 2005 and 

2009. 

For a subset of organization websites in our data, we also have data on the technologies 

used in these organizations’ websites between 2016 and 2018. We collected this data from the 

HTTP Archive, an organization that takes snapshots of websites and analyzes them for their 

technical attributes. Specifically, the HTTP Archive runs an open-source tool developed by the 

company Wappalyzer on each website, which flags the technologies being used. The data 

capture both technology categories that contribute to the basic architecture of websites, such as 

web frameworks and databases, and technology categories that support monetization and e-

commerce, such as marketing automation and payment processors. This data helps us construct 

proxies for websites’ technical complexity and the organizations’ intent to monetize their 

websites. We conceptualize the number of web technologies as being correlated with the 

technical complexity of the website and, thus, the technical complexity when attempting to 

update the site’s web server. We think monetization tools indicate that security vulnerabilities 

would be particularly damaging and that significant benefits exist to keep the website secure. 

This data is available for 24,263 organizations in our dataset. 

To study whether disclosures of data breaches by organizations in the same geography or 

the same industry prompt organizations to improve and secure their own software, we also obtain 

data on breach disclosures from Privacy Rights Clearinghouse’s Data Breach Chronology, the 

best publicly available data source for breaches to our knowledge. Data Breach Chronology 

compiles breach disclosures from various sources, including the media, state attorney generals’ 

offices, and other online trackers for breach disclosures. This data contains 2,366 disclosed data 

breaches between 2005 and 2018 in all fifty US states and Washington D.C. Each disclosure 

includes the reporting organization, the date of disclosure, and the state and broad industry 

category of the organization’s operations. For 1,490 (63%) of these, the organizations also 

reported the number of affected personal records. 

Because our information about organizations from Mint Global contains data from only 

one year, 2018, we also repeat some of our analysis for publicly traded firms. Publicly traded 

companies make available data on an annual basis about their operations. Therefore, we focus on 

publicly traded firms for some of our analysis. Our data for those firms come from Compustat 

and covers the full panel of U.S. public firms every year. This data contains a wide range of 
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organization characteristics such as the total assets, capital expenditure, cash flow, and income, 

allowing us to examine organization characteristics that might affect updating decisions deeply. 

The data’s time dimension also enables us to study the effects of changes in financials within 

organizations. A drawback to using this data source is a significant sample size reduction, given 

that only a tiny fraction of organizations in our sample are public firms. 

Table 1 enumerates and summarizes all the data sources used in our analysis. Table 2 

shows summary statistics for the restricted panel of web server usage in Table 1 Row (i)(b) 

merged to the various organization and website characteristics. Appendix Table A1 shows 

detailed variable definitions. Appendix Table A2 displays the correlation of various measures 

used in our analysis. 

4. Empirical Framework 
The first component of our empirical analysis is descriptive, where we document the 

extent and distribution of security vulnerabilities in the Apache server software being used by 

organizations over time. To perform this analysis, we use our broad panel data with almost five 

million observations from 150,854 organizations, described in Row (i)(a) of Table 1. We 

examine the proportion of organizations using Apache server software with severe security 

vulnerabilities and illustrate changes over time and heterogeneity across the industry, geography, 

and firm size. We show these results in Sections 5.1—5.3. 

4.1. Sequential logit analysis for cross-sectional determinants of user decisions  

Based on the empirical evidence we find from the above exercise, we then investigate the 

characteristics of organizations associated with better responsiveness to vulnerability disclosure 

and software improvement. We focus on examining which organizations updated quickly (FC), 

slowly (DS), versus did not update at all (DN) during the six-month windows following new 

releases that fixed severe security vulnerabilities. 

Using the Release Window cross-sectional dataset, we estimate an empirical model that 

mirrors the model presented in Figure 1. Specifically, we estimate a sequential logit model with 

two stages of choice: In the first stage, an organization decides whether to update to the new 

version that fixes its severe security vulnerabilities immediately within two months (FC) versus 

to delay (DS or DN). If the organization decides to update immediately, its decision outcome is 
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FC. If the organization chooses to delay, it enters the second stage, where it decides whether to 

do something within the extended observation window of six months (DS) versus to do nothing 

(DN). 

The sequential logit regression models each stage of choice separately using a standard 

logit decision model for the subsample of organizations that are “at risk” of making the 

decisions. For the first stage of the decision, with FC as the base outcome, the probability of 

updating immediately and choosing FC is specified as follows: 

𝑃!#(𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔𝐹𝐶) =
$

%$&'()	+,!"&,!!-!,$%&⋯&,!&-&,$%/0
 (1) 

where 𝑖 denotes the organization and 𝑤 denotes the release window for the observation. 𝑋1,!# 

includes characteristics of the organization.23 

If an organization chooses not to respond immediately, it enters the second stage. With 

DS as the base outcome, the probability of choosing DS conditioning on entering the second 

stage is the following: 

𝑃!#(𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔𝐷𝑆|𝑛𝑜𝑡𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔𝐹𝐶) =
$

%$&'()	+,'"&,'!-!,$%&⋯&,'&-&,$%/0
 (2) 

And the probability of choosing DN conditioning upon entering the second stage is the 
following: 

𝑃!#(𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔𝐷𝑁|𝑛𝑜𝑡𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔𝐹𝐶) =
'()	+,'"&,'!-!,$%&⋯&,'&-&,$%/

($&'()	+,'"&,'!-!,$%&⋯&,'&-&,$%/
	 (3) 

By examining the coefficients on the components of 𝑋1,!#, we can understand which 

organizational characteristics are associated with the organization having an FC, DS, or DN 

approach. We show these results in Section 5.4. 

 

4.2. Survival analysis for within-organization, time-varying determinants of user 
decisions 

The sequential logit model is helpful for shedding light on the determinants of user 

decisions in response to releases at the cross section. However, the model does not permit one to 

 
23 If some characteristics of an organization change within the six-month release window 𝑤, we use in the 
regressions the values at the beginning month of the release window. 
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vary an organization’s characteristics within each release window and only uses cross-sectional 

variations and data. As a result, if there are organizational characteristics or other covariates that 

vary within organization over time that influence how soon an organization updates, the model 

does not capture these effects. Our last piece of empirical analysis, therefore, utilizes the time 

dimension of our restricted panel to shed light on the time-varying organizational characteristics 

and attributes of software update releases that instigate or impede the rate that organizations 

install those updates.  

Because the outcome of interest in this analysis is a time-to-event variable—the amount 

of time since the organization’s previous update to the organization’s next update, we estimate 

survival models with time-varying covariates to study what predicts updating faster or slower. 

The standard Cox proportional hazards regression model with time-varying covariates is as 

follows: 

ℎ(𝑡) = ℎ4(𝑡)𝑒𝑥𝑝	J𝑏$𝑋$" + 𝑏5𝑋5" +⋯+ 𝑏1𝑋1"M	 (4) 

where ℎ(𝑡) is the hazard function, representing the expected monthly updates given that the 

version has continued usage for 𝑡 months. ℎ4(𝑡) is the baseline hazard and represents the hazard 

when all the independent variables 𝑋$" , … , 𝑋1" are equal to zero.24 

While the above model allows us to explain differences in the rates that organizations 

update their server software using the observed time-varying organization and environmental 

attributes, there is the possibility of remaining unobserved organizational routines around 

updating. This raises a methodological concern. Specifically, the model in Equation (4) assumes 

that the baseline hazard ℎ4(𝑡) is identical across organizations. However, as we will show later 

in the Results section, we have discovered considerable heterogeneity across the organization in 

updating decisions that observable covariates cannot explain in our cross-sectional regressions. 

Not accounting for the unobserved differences in the organizations’ baseline hazard, or 

 
24 Implementation-wise, the Cox model with time-varying covariates requires two distinct variables to keep track of 
the time-to-update. For example, suppose a software updating cycle consists of three months and there are covariates 
that vary at the monthly frequency, then this updating cycle would make three separate monthly observations. The 
first observation has a starting time-to-update at month 0 and an ending time-to-update at month 1. It is tied to the 
combination of covariate values in the first month. The second observation has a starting time-to-update at month 1 
and an ending time-to-update at month 2. It is tied to the combination of covariate values in the second month. The 
third observation has a starting time-to-update at month 2 ending time-to-update at month 3. It is tied to the 
combination of covariate values in the third month. The event equals 1 (“updated”) only for the third observation. 
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propensity in updating would give rise to a reverse causality issue. For example, organizations 

that lag in updating their Apache server software are more likely to use older versions that 

accumulate more severe security vulnerabilities over time. If we assumed that all organizations 

have the same baseline hazard and estimated a Cox model, the estimated coefficient on 

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" would be biased downward, meaning that we are more likely to find a 

negative effect of severe security vulnerabilities on the organizations’ decisions to update. 

Therefore, to control for unobservable differences in different organizations’ baseline 

hazards, our preferred specification is a stratified Cox model: 

ℎ!(𝑡) = ℎ4!(𝑡)𝑒𝑥𝑝	J𝑏$𝑋$" + 𝑏5𝑋5" +⋯+ 𝑏1𝑋1"M (5) 

where the 𝑖 subscript on the hazard functions denotes stratum organization 𝑖. Appendix A3 

discusses additional justifications for stratifying at the organizational level. Under this model, the 

effect of a time-varying variable is identified by the changes to that variable within an 

organization. To identify the heterogeneity in the effect of the time-varying variable across 

organizations, one can easily do that by interacting the time-varying variable with organization 

characteristics. Since the stratified Cox model absorbs the unobserved differences in the baseline 

updating rate across organizations, the interaction terms isolate the observed factors associated 

with differences in organizations’ speed of updating. 

In our analysis, we include a variety of covariates in 𝑿𝒊𝒕. One primary time-varying 

variable of interest, ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" captures whether the version of the software in use had 

publicly disclosed severe security vulnerabilities. Additional time-varying variables of interest 

are 𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" and 𝑛𝑒𝑤𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" . Including the two variables 

serves two purposes. First, we want to investigate how much organizations responded to 

vulnerabilities versus releases of new versions. Second, if no new versions are available for 

organizations to update when severe vulnerabilities are disclosed, organizations’ inaction is not 

due to a response failure. If we do not control for the availability of new versions, major or 

minor, we will underestimate the effect of disclosures of vulnerabilities on organizations’ 

updating decisions.  

We think of the discovery, reporting, and disclosures of severe security vulnerabilities 

and the releases of new versions to be plausibly exogenous timing to individual organizations’ IT 

staff. Though testing exogeneity assumptions formally is generally difficult, our assumption in 
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this setting is intuitive. The vast majority of web developers and IT professionals are not directly 

involved in developing the Apache server software and its vulnerability disclosure decisions. 

However, they can potentially influence the process through bug discovery and reporting. IT 

professionals discover bugs in the software when they interact with it; for example, when they 

use the software to build applications or develop new features of the software itself—the chances 

of finding bugs increase when the total interaction with the software increases. However, as 

many individuals and organizations around the work worldwide on the Apache web server, 

changes in the activities of any particular organization (other than the Apache Foundation) are 

tiny compared to the total amount of interaction. To confirm that individual organizations’ 

actions do not have an outsized impact on Apache server software's bug handling and release 

process, we inspect our data on who was credited with discovering or reporting each 

vulnerability to the Apache Software Foundation. Other than the staff at the Apache Software 

Foundation Security Team, we find almost no overlap in the names and organizational 

affiliations of the reporters. 

To understand what factors are associated with organizations being more or less 

responsive to the disclosure of security vulnerabilities and the availability of new software 

versions during their IT operation cycles, we include interactions between the above time-

varying variables and organization and environmental attributes in some specifications of our 

empirical analysis. 

We show results from our survival analysis in Section 5.5. 

5. Results 
5.1. Prevalence of Security Vulnerabilities 

In our broad panel, we begin by documenting the extent and distribution of security 

vulnerabilities in the Apache server software being used by organizations between 2001 and 

2018. We focus on organizations operating with vulnerabilities under three different scenarios: 

1) severe security vulnerabilities that have been reported to Apache, 2) severe security 

vulnerabilities that are publicly disclosed, and 3) severe security vulnerabilities that Apache had 

previously released a patch fixing. 
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Figure 2(a) shows the fraction of organizations using Apache versions with reported 

severe security vulnerabilities. Organizations with these vulnerabilities would be susceptible to 

potential attacks. The figure shows that a considerable fraction of organizations’ servers operated 

with these vulnerabilities throughout our sample. Over the course of the almost 20 years in our 

sample, the fraction of firms operating with these vulnerabilities was smallest in November 2015 

at around 30%. The fraction is the highest, at almost 100%, in December 2015 when a critical 

security vulnerability in a module that assigns content metadata to the content selected for an 

HTTP response was discovered. 

Figure 2(b) shows the fraction of organizations using Apache versions with publicly 

disclosed severe security vulnerabilities. Malicious parties could easily utilize information about 

disclosed vulnerabilities to find and target organizations using server software with these 

vulnerabilities. The fraction of organizations using Apache versions with publicly disclosed 

severe security vulnerabilities was above 19% in all months we observed. The fraction peaked in 

October 2004 at 98% when several severe security vulnerabilities affecting Apache 2.0.x became 

public in the latter half of 2004. 

One might wonder if security vulnerabilities are primarily found on the websites of 

incumbent firms while new entrants avoid operating with vulnerabilities by selecting newer and 

more secure server software. Figures 2(a) and 2(b) display the percentage of firms with reported 

and disclosed security vulnerabilities separately for incumbent and new organizations. Both 

figures show that new organizations were better at adopting more up-to-date, secure software 

versions by a small margin. Unlike incumbent firms, new entrants are unburdened by technical 

investments of the past. Therefore, entrants may be able to install updates and new versions of 

software more easily and maybe more discerning and aware of recent releases of software 

versions. 

Figure 3 shows the fraction of organizations using Apache versions with one or more 

severe security vulnerabilities that were publicly disclosed and already fixed in newer versions of 

the Apache server software. Alarmingly, except for the early period until March 2002, more than 

19% of organizations in all months of our sample used Apache versions with severe security 

vulnerabilities already fixed in newer versions. In addition, this plot documents that a significant 

fraction of organizations operate server software with multiple severe security vulnerabilities, 

providing malicious actors numerous avenues for attacking these organizations’ websites.  
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Given the prevalence of using vulnerable server software, these figures alarmingly 

demonstrate that hackers would have no trouble finding servers to exploit.  

5.2. Responding to Updates 

Closer scrutiny of Figure 3 allows us to discern organizations’ responses to releases of 

new versions that fixed severe security vulnerabilities. Figure 3 plots the release dates of the 

fixes, represented by the vertical grey lines. This allows us to gauge both organizations’ 

propensity to install updates and the speed of response to those fixes. Organizations’ response to 

these releases is slow and unthorough. A significant fraction of organizations did not respond to 

releases. For example, in July 2006, the Apache Foundation released Apache 1.3.37, Apache 

2.0.59, and Apache 2.2.3, which fixed a vulnerability that allows remote attackers to cause a 

denial of service (application crash) and possibly execute arbitrary code. Many organizations, 

however, took months or even years before updating to those releases. The fraction of 

organizations using problematic versions of Apache peaked at 92% after the release, but the rate 

declined by only 1.6% per month for the next three years. By mid-2009, over 30% of 

organizations continued operating vulnerable versions of the Apache server software. 

The red oval in Figure 3 shows the six-month window following the July 2006 release. 

Among the users impacted by the specific vulnerability and the release (70% of the user base), 

16% acted as FC organizations and installed the available software update within two months. In 

addition, 12% of firms acted as DS organizations and updated within six months. The remaining 

72% of DN organizations chose not to install the update even six months later.25 

Repeating the above exercise, we can identify the FC, DS, and DN organizations in 

different six-month release windows in our data. Each release window corresponds to a release 

that fixed severe security vulnerabilities, and that was at least six months from the next such 

release. Overall, we have 161,106 observations of organization-release windows, which 

constitutes our release window cross-sectional dataset. We find from this dataset that for 12% of 

the observations, the organizations can be categorized as FC, 12% as DS, and 76% as DN. 

 

 
25 Note that we do not include in the above computation the 30% of the user base that either used Apache versions 
free from any public severe vulnerabilities or used versions not impacted by that specific vulnerability. 
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5.3. Heterogeneity in Responding to Updates 

To what extent is the lack of response to released software updates fixing severe security 

vulnerabilities similar across organizations or isolated to particular subsets of organizations, such 

as incumbent firms, firms in specific industries, or firms in particular geographies? 

Figure 4 explores the heterogeneity in these patterns across organizations and websites 

with different characteristics. In Figure 4 Panel (a), we split our sample into new and existing 

sites. If new users were more discerning when actively selecting a software product, they might 

select newer versions that fixed well-known severe vulnerabilities and avoid versions with those 

vulnerabilities. Indeed, in the plot, we show that a lower fraction of new websites installed 

problematic interpretations of the server software relative to existing sites. 

Panel (b) examines the differences based on the organization’s size. For example, smaller 

organizations might be more agile and able to update their server software faster due to a small 

coordination cost across their IT-related departments. Indeed, the plot shows that larger 

organizations more frequently maintained vulnerable software even when fixes were available, 

whereas smaller organizations were more inclined to switch to newer versions with fixes. 

Panel (c) breaks down the organizations by the geographic region of the organization’s 

headquarters. If different geographic regions have different levels of attentiveness regarding 

security issues in software—for example, if Silicon Valley-based firms more frequently hear 

about security bugs through informal networks—we might expect geographic variation in using 

vulnerable versus secure software. Furthermore, if the local labor market for security and 

engineering professions differs across regions, this could influence software updating decisions. 

In the plot, however, we find a relatively slight variation in software usage with and without 

severe security vulnerabilities across geography.  

Panel (d) displays the variation across industries. We find some substantive differences in 

the software updating decisions. For example, organizations in the Health and Food & 

Accommodation industries less frequently maintain server software with severe vulnerabilities 

than those in the Finance and the broadly defined Information industries when fixes are 

available. 
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Figure 4 shows some heterogeneity. However, the main finding from these plots is that 

compromised Apache servers are prevalent across organizations at different stages of 

development, large and small, in all states and industries. 

5.4. Explaining the Response to Updates 

What explains why some firms respond to the release of updates by installing them and 

others largely ignore these updates? In this section, we investigate the cross-sectional 

determinants of user decisions regarding whether an organization is an FC, DS, or DN using 

estimates from the sequential logit regression model described in Equations (1)-(3) fitted to our 

release window dataset. 

Table 3 reports the results of that estimation. In the first specification, we fit the model 

using our 161,106 observations of user decisions to explanatory variables that are relatively well 

populated. After matching the various data sources, we end up with 108,385 observations. In the 

second specification, we add variables that shed light on potentially significant margins of the 

decision process but are much less well populated. These variables include whether the 

organization has outsourced IT its operations, metrics for the technical complexity of its website, 

and whether the organization has monetized its website. This sample has 26,540 observations. 

Despite the very different sample sizes, the main patterns that emerge from the two regressions 

are very similar. 

Historical updating behavior is a large and significant predictor of user decisions in 

response to releases of fixes to severe vulnerabilities. We include both the 𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! 

and the 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! variables in the sequential logit regressions. Therefore, the dropped 

category for historical updating behavior is those who updated once during the first nine months 

of observations. 

The sequential logit coefficients for our larger sample in the first stage of decision, shown 

in Column (1), suggest that an organization that has historically been an infrequent updater has a 

𝑒𝑥𝑝(0.167) =1.18 times the odds of the dropped category of delaying and becoming DN or DS 

holding other variables constant. In contrast, an organization that has historically been a frequent 

updater has a 𝑒𝑥𝑝(−0.239) =0.787 times the odds of the dropped category of delaying and 

becoming DN or DS. If an organization has moved to the second stage, shown in Column (2), the 

organization that has historically been an infrequent updater has a 𝑒𝑥𝑝(0.192) =1.21 times the 
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odds of the dropped category of doing nothing. In contrast, a historically frequent updater has an 

𝑒𝑥𝑝(−0.0987) =0.91 times the odds of the dropped category of doing nothing. The results from 

the smaller sample are qualitatively similar. 

We also find that whether an organization operates its server software from the cloud is a 

large and significant predictor of responding to the releases, particularly in the second stage. As 

shown in Columns (2) and (4), an organization on the cloud has at most an 𝑒𝑥𝑝(−0.505) =0.60 

times the odds an organization not on the cloud of doing nothing. 

Moreover, data breaches that happened right before the release event window in the same 

broad industry category are correlated with a need for more response. This result may reflect that 

industries that persistently do a poor job of updating and keeping their software secure suffer 

from more cyberattacks. Shown in Columns (2) and (4), a 1% increase in the number of personal 

records affected in data breaches disclosed from the same broad industry category is associated 

with at least an 𝑒𝑥𝑝(0.01 ∗ 0.0207) =0.02% increase in the odds of doing nothing. The effect is 

statistically significant, though economically small. 

We find most of the other variables insignificant in predicting user responses. Notably, 

we find an organization’s location, revenue, and whether it is public matters little. General 

measures of an organization’s IT operations, such as the number of PCs and IT staff, also do not 

seem to matter for the cross-section. Even the technical complexity of the website and that the 

website was used for monetization did not generate fewer or more responses. Moreover, the 

constant term at both stages is the most significant predictor of user decisions. This indicates that 

unobserved characteristics primarily drive organizational decisions. 

Our evidence so far points to organization-specific characteristics in the detail of its IT 

operations to result in persistent differences in responses. Some of those characteristics are 

observed, such as using cloud services like AWS. The remaining variation is mainly due to 

unobserved differences. 

5.5. Speed of Response to Available Updates 

Organizations forgo immediately installing updates must decide when they will install 

available updates in the future. This decision of how long to wait to install updates may be 

influenced by the characteristics of the organization as well as attributes of the software updates 

themselves. Many of those characteristics could be time-varying, whose effects our sequential 
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logit analysis cannot capture. In this section, we investigate the determinants of the speed of 

updating by exploiting the variations of those time-varying variables in our restricted panel. 

We begin by exploring the simple correlations between the time-varying organizational 

and software characteristics and the speed of installing software updates. Table 4 Column (1) 

shows the estimated Cox proportional hazard model represented in Equation (4). The estimated 

coefficient on the availability of a new software version is correlated with a higher hazard rate of 

updating. The coefficient on  ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" is significantly negative, however, implying that 

running server software with security vulnerabilities correlates with a 1 − 𝑒𝑥𝑝	(−0.174)=16.0% 

lower monthly updating rate. This correlation, however, suffers from reverse causality. 

Organizations that less frequently or more slowly update their server software are also likely to 

accumulate vulnerabilities in that software. In order to isolate the relationship between the 

presence of security vulnerabilities in software and the decision of organizations regarding when 

to update, we need to adjust for organizations’ baseline propensity to update their server 

software.26 

One way to control for organizations’ baseline propensity for updating is to include 

variables that capture that propensity. Column (2) of Table 4 shows the results where we include 

a range of organization and software usage characteristics as controls, for example, 

organizations’ historical updating patterns captured by the variables 𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! and 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟!, and the full sets of state and industry dummies. The coefficient on 

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" continues to be negative and significant, indicating sizable unexplained 

heterogeneity in organizations’ updating decisions, apparently not explained by organizations’ 

observed characteristics. 

A more flexible way to control for organizations’ baseline propensity for updating is to 

stratify the Cox model at the organization level, as in Equation (5). Doing so allows each 

organization to have a completely different baseline hazard and overcomes the reverse causality 

issue. The stratification approach is similar to the organization’s fixed effects in a linear 

regression model. We use the within-organization variations of the independent variables to 

study their impact on the updating decisions. 

 
26 We visualize the relationship between the rate of updating and the presence of severe security vulnerabilities in 
server software in Appendix Figure A2. 
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Column (3) of Table 4 shows the estimates of that model without additional controls. The 

stratification changes the estimated sign on ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" . The coefficient is 0.067, both 

positive and significant at 1%. This implies that if an organization’s Apache server software is 

disclosed to have severe security vulnerabilities, holding all else fixed, it is associated with an 

𝑒𝑥𝑝(0.067) − 1 = 6.9%	increase in the organization’s hazard rate of updating. 

That the addition of controls in Columns (1)—(2) does not change the sign or 

significance of the coefficient on ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" while stratification by organization in 

Column (3) does is telling. Organizations’ software updating behavior is more associated with 

unobservable organization characteristics than observed ones. Updating decisions largely cannot 

be explained by obvious factors, such as industry, geography, website traffic, usage of cloud 

services, or even technologies on site. Instead, organizations likely have operational differences 

in software updating habits for various idiosyncratic reasons. 

The other rows of Table 4 Column (3) show that organizations are more responsive to the 

availability of new software than the announcement of a severe security vulnerability in the 

software they use. The coefficient on 𝑛𝑒𝑤𝑀𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" is substantially positive 

and significant, at 0.680. This implies that if there is a newer minor version than the version of 

Apache the organization is currently using, holding all else fixed, including the availability of 

newer major versions, it is associated with an 𝑒𝑥𝑝(0.680) − 1 = 97.4%  increase in the 

organization’s probability of updating per month. 

Column (4) of Table 4 further breaks down the effects of vulnerability disclosures and 

new releases on the propensity to update. Column (4) of Table 4 adds coefficients for if the 

version of Apache software an organization is using has a severe security vulnerability disclosed 

within the previous three months and if the updates available to an organization contain fixes for 

severe security bugs, non-severe security bugs, as well as if the update contains new or improved 

features unrelated to security. 

The coefficient on 𝑤𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑒𝑀𝑜𝑛𝑡ℎ𝑠𝑆𝑖𝑛𝑐𝑒𝐴𝑑𝑑𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" is large, positive, and 

significant at 0.214, meaning that an organization would increase its probability of updating by 

𝑒𝑥𝑝	(0.214) − 1 = 23.9% if a severe vulnerability was disclosed less than three months ago. 

Moreover, the inclusion of this variable makes the coefficient on ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" close to zero 
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and insignificant, suggesting that organizations’ responses to severe vulnerabilities are 

concentrated to within three months since each disclosure. 

The coefficient on 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!", which captures the number of severe 

vulnerabilities the new minor version has fixed, is positive but small and not statistically 

significant. The coefficient on 𝑛𝑜𝑛𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!", which captures the number of non-

severe vulnerabilities the new minor version has fixed, is negative and significant. Each 

additional fix of non-severe bugs is associated with 1 − 𝑒𝑥𝑝	(−0.012) = 1.2% lower hazard rate 

of updating. The coefficient on 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠!", which captures the number of feature 

changes the new minor version has implemented, is similarly negative and significant. Each 

additional feature change is associated with  1 − 𝑒𝑥𝑝	(−0.007) = 0.7% less updating. This 

implies that updates that contain many feature changes are also less likely to be installed 

immediately. 

The results in Table 4 Column (4) demonstrate that organizations are more responsive to 

easily installed, incremental software updates than larger and more complex ones. New minor 

software versions are more likely to inspire an organization to adopt that update quickly. In 

contrast, major updates or updates composed of many non-essential feature changes are less 

likely to garner fast adoption. 

Lastly, we examine if there is heterogeneity across organizations in their responses to 

vulnerability disclosures and releases of new versions. Specifically, Column (5) of Table 4, we 

interact the organizational attributes with vulnerability disclosures and the availability of new 

versions. 

The estimated coefficient on the interaction term 𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" ×

ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! is 0.157 and significant. This implies that organizations have an 

𝑒𝑥𝑝	(0.157) − 1 = 17.0% higher probability of updating per month when a new minor version 

is available if Alexa ranked the organization’s website as among the top one million by traffic in 

2010. High-traffic websites are frequently the target of cybercriminals, and, therefore, may see 

considerable benefits to installing updates to their server software. 

Column (5) of Table 4 also shows that organizations using the cloud are more responsive 

to releasing new software versions. The coefficient on the 𝑐𝑙𝑜𝑢𝑑!" variable is large, negative, and 

significant, meaning that if a site is hosted on the cloud, it is associated with a smaller probability 
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of updating per month at the baseline. The interaction term 𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" ×

𝑐𝑙𝑜𝑢𝑑!", however, is large, positive, and significant, meaning that when new minor releases 

come out, being hosted on the cloud is associated with a higher probability of updating. This 

suggests that organizations may face different incentives in updating on the cloud. For example, 

monitoring day-to-day may become costly, but new releases may prompt IT professionals to 

perform checkups and maintenance. 

Taken together, these results demonstrate that costs and benefits are associated with the 

responsiveness of organizations to changes in their server software’s up-to-datedness. Cloud 

providers may be able to lower the relative cost of responding to software releases. At the same 

time, high traffic to a website might encourage an organization to install new minor versions of 

server software when released. 

Similar to high-traffic websites, public firms may also face increased visibility, making 

them particularly attractive targets for cyberattacks. In Column (6) of Table 4, we repeat our 

analysis regarding heterogeneity, focusing exclusively on publicly traded firms in our sample. In 

addition, because public firms disclose more information about their firm activities, we include 

additional control variables. 

The estimated coefficient on 𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" ×𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠! is 

positive and significant. This coefficient suggests that when new minor releases come out, an 

additional monetization technology embedded on a firm’s website is associated with an 

𝑒𝑥𝑝	(0.123) − 1 = 13.1% increase in the hazard rate of updating. The coefficient on the 

interaction term 𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" × 𝑡𝑒𝑐ℎ𝑠! suggests that that when new minor 

releases come out, an additional category of technology embedded on the firm’s website is 

associated with a 1 − 𝑒𝑥𝑝	(−0.058) = 5.6% decrease in the hazard rate of installing updates. 

Despite the much smaller sample size and the compromise on the precision of the 

estimates, the results in Column (6) highlight that public firms are more responsive to the new 

release of new software versions when they monetize their websites and thus have higher 

benefits to maintaining secure websites, and are less responsive when their websites are 

technically more complex. 

For both the broader sample of organizations and the sub-sample of publicly traded firms, 

releases of software updates, rather than the announcement of security vulnerabilities, are the 
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primary instigator of the pace of adopting updates. Similarly, the technical complexity of an 

organization’s website and the content of the new release slows the pace at which an 

organization installs important software updates. 

5.6. Robustness and Alternative Remediation Methods 

Some severe security vulnerabilities associated with Apache only impact a subset of 

Apache deployments. For example, a bug may create a vulnerability for organizations running 

the Apache software on a Linux-based server, but not create a vulnerability for organizations 

running the Apache software on a Windows-based server. If vulnerabilities are bespoke to their 

context, then organizations may reasonably forgo installing updates that are unrelated to their 

server setup. During the time frame of our analysis, 5 out of the 28 severe security vulnerabilities 

in Apache only impacted deployments on specific operating systems. In Appendix Tables A3 

and A4, we test if these vulnerabilities qualitatively change our results by dropping them from 

our regressions. The sequential logit regressions in Table A3 shows that the results are 

qualitatively and quantitatively similar when we drop event windows around the releases of fixes 

to operating system-specific vulnerabilities. When it comes to the time-to-update in the survival 

analysis, if organizations are more responsive to vulnerabilities specific to their operating 

systems, we will observe the coefficient on ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" to be biased downward when we 

drop operating system-specific vulnerabilities in the construction of the ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" 

variable. Appendix Table A4 shows that the coefficient on ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" turns negative, 

consistent with this intuition. The coefficients of other variables are similar to those in Table 4. 

In addition, organizations may choose to ignore or delay installing updates related to 

severe security vulnerabilities that do not seem easily exploitable. In particular, if the potential 

costs of installing updates are high, organizations may wait to install updates that have a low 

probability of being exploited. Furthermore, they may use that delay time to learn from their 

counterparts about any technical issues or pitfalls from installing the updates. We test if security 

vulnerabilities with low potential exploitability have a sizeable impact on our results. In 

Appendix Tables A5 and A6, we re-estimate our main specifications, but drop 9 out of the 28 

severe security vulnerabilities that are not considered to be highly exploitable. Again, overall, the 

coefficients in Appendix Tables A5 and A6 demonstrate the same basic results as our previous 

results. One difference, however, is that the coefficient on the organization using a cloud service 
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provider is no longer negative and significant in the sequential logit regressions. This could be 

because cloud hosts are more attentive to both highly exploitable and low exploitable 

vulnerabilities, whereas firms that are not on a cloud provider focus more attention on highly 

exploitable vulnerabilities. 

Finally, organizations may be slow to patch their web server software because they rely 

on other forms of remediations. For example, organizations may have intrusion detection 

systems (IDSs) installed that provide alerts when suspicious activity is found on the 

organizations’ machines. If the IDS provider updates their database of vulnerabilities in a timely 

manner, organizations may at least be able to detect the exploitation of a vulnerability even if 

they have yet to install the software patch closing that vulnerability (Ransbotham, et al, 2012). 

Unfortunately, our data does not allow us to observe which organizations contract with an IDS 

and which do not.  

 

6. Conclusion and Discussion 
This study examined the largest assembled dataset tracking security vulnerabilities in 

open-source server software used by over 150,000 organizations in the United States between 

2000 and 2018. Our goal was to understand a previously unexplored research question: how fast 

do software users respond to the availability of secure versions, and what determines the 

variance in the installation distribution? Previous research on cybersecurity has primarily 

focused on the role of the software vendors in providing updates for vulnerabilities and took for 

granted that users would automatically implement them, an approach that ignores the significant 

heterogeneity in whether and when software users respond to such updates.  

Across our data, we found widespread usage of insecure server software by 

organizations. In nearly every month between 2000 and 2018, no less than 19% of the Apache 

servers in use contained a severe security vulnerability. This alarming finding means that the 

opportunities for malicious actors to exploit vulnerabilities are extremely widespread online. 

We also found that organizational routines regarding updating server software are hard to 

predict using the observable characteristics of organizations in our data. Organizations can be 

broadly classified as Frontier Chasers (FC), Do-Nothing (DN) firms, and Do-Something (DS) 
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firms based on how quickly they update to new versions of the Apache server software after its 

release. FCs are those that keep their software at the technological and security frontier by 

immediately installing updates and security patches as they become available. DNs choose a 

baseline rate of update that largely ignores available software updates. DSs are those that opt not 

to install updates immediately after their release yet do intend to install the updates eventually.  

Our analysis revealed that an organization’s industry, geography, and characteristics of 

the organization’s website do not strongly predict the organization’s routine regarding software 

updates. Instead, persistent unobservable aspects of organizations explain much of the variation 

in the updating routines. These unobservables may include organizational culture, 

complementary technologies, external vendor relationships, or other factors for which 

observational data cannot be easily obtained. 

Lastly, we examined the organizational characteristics and attributes of Apache updates 

that predict how quickly an organization will install an update. Econometrically, analyzing 

organizational characteristics poses a challenge, as there is a reverse causality concern that 

makes vulnerabilities and slow responses to available software updates appear correlated: the 

longer that an organization uses a version of software, the more likely that version of software is 

to contain a severe vulnerability. Implementing a hazard model approach with stratification, 

thereby allowing for organization-specific proclivities to upgrade, we undercover that the factors 

most predictive of an organization installing a software quickly are those that cut down the cost 

of the update, such as the usage of cloud-hosting services such as AWS, and those that raise the 

benefits of a secure website, such as the presence of monetization technologies on the site. The 

factors that are more predictive of slower rates of installing updates are organizations whose 

websites are more technically complex and may need to be more careful about the potential of 

updates to break components of their site. As for the attributes of the Apache updates that may 

affect organizations’ responses to available updates, we documented that software updates that 

are smaller and contain fewer major security updates are more likely to be adopted by 

organizations versus updates that contain new features or major security patches. 

The findings in this paper highlight ways that organizations can increase cybersecurity. 

First, leaders of organizations can institute organizational routines that are attentive to 

cybersecurity and software management. Our data highlighted that most organizations do not 

routinely install software updates within the six months following their release. Indeed, we found 
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relatively few firms that demonstrated the habit of installing software updates when they became 

available. And yet, cyberattacks are likely to pick up on hints from these update releases and 

target sites during the months following the release (Mitra and Ransbotham, 2015). Therefore, 

managers should consider if a routine that includes updating at regular intervals is beneficial for 

their organization. Second, organizations can take actions that reduce the cost of installing 

updates. One way that an organization can decrease the frictions involved in updates is by 

hosting their website on a cloud-based platform that assists with installing software updates. 

Another way that organizations can reduce friction is by decreasing the technological complexity 

of their website. Many websites use a complex web of technologies in the code of their website. 

The complexity, however, makes it challenging for a firm to install updates, as the update may 

break the components of the site. Managers who wish to mitigate such friction can consider 

pruning the technologies utilized for serving the site. 

Our findings also have implications for policymakers. First, scholars and policymakers 

have debated whether or not to mandate the disclosure of software vulnerabilities (Arora, Telang, 

and Xu, 2008). Given how slow and unthorough organizations are installing updates, mandating 

disclosure about software vulnerabilities may be socially inefficient. Disclosures of software 

vulnerabilities could point malicious actors towards exploitable bugs without instigating users' 

faster adoption of software updates. Second, software vendors have been torn between two 

approaches: disclosing information about vulnerabilities in hopes that the description of the 

problem might instigate users to install patches or releasing software updates without details on 

vulnerabilities (Mitra and Ransbotham, 2015). Our findings suggest that the latter approach, in 

which little information about vulnerabilities is disclosed, warrants more consideration. Our 

analysis of the time until a firm installed a software update revealed that fixes for severe bugs in 

an update did not significantly speed up the installation of that update. Instead, much of the 

variation in time to installation derives from persistent organizational routines and unobservable 

organizational heterogeneity. This suggests that disclosing more information about 

vulnerabilities will give malicious actors more information to craft their attacks but may not jolt 

firms into hardening their defenses. Third, scholars have debated if software vendors should be 

liable for the cost of installing patches (August and Tunca, 2011). The lengthy delay between the 

release of software updates and the installation that we discovered in our data reveals that the 

costs associated with installing patches must be quite high for many firms. While it may be 
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challenging to enact this policy for open-source software, our results suggest that subsidizing 

patching costs may be beneficial to increasing cybersecurity.  

Our work does have limitations. First, we are only examining Apache web servers. While 

open-source server software operates on the majority of servers today (Greenstein and Nagle, 

2014), the process of installing updates on proprietary server software, especially from software 

vendors that automatically send software updates to users, may be different. We were able to 

acquire data for our analysis because Apache server software is open source, the Apache 

Foundation is transparent about vulnerability reports, and the Apache Foundation documents and 

releases information on the contents of every software update. Proprietary software vendors are 

less transparent about their products and users. However, future research on the usage of 

proprietary software would enable a more complete picture of software user behavior more 

generally. Second, we have limited ability to match our data on server software decisions at 

organizations with other management practices at those organizations. The observed routines 

regarding software updates may reflect broader managerial routines or IT investments. While we 

have attempted to match our data with information in the World Management Survey, the 

overlap in samples provide limited statistical power for analysis, and the select sample of 

matching firms constrains the external validity of any findings. We hope that future researchers 

will find ways to expand on the work that we have begun by attempting to understand how 

managerial practices more broadly influence IT and cybersecurity investments.  
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 42 

Figure 2 Organizations Operating with Severe Security Vulnerabilities 

 

  (a) Reported  (b) Disclosed 

Notes: A new website is the first capture of a website by the Internet Archive between 

Jan 1, 2000, and August 31, 2018. Only vulnerabilities rated to have “high” severity by the 

National Vulnerability Database (NVD) are included in computing the fractions. Figure 2(a) 

plots the fraction of organizations in our broad panel between December 2001 and August 2018. 

The determination of when a severe security vulnerability was discovered is by the time the 

vulnerability was reported to the Apache Software Foundation. The first severe vulnerability 

report in our data is from November 2001. Figure 2(b) plots the fraction of organizations in our 

broad panel between July 2002 and August 2018. The determination of when a severe security 

vulnerability became public is by the Apache Software Foundation. The first severe vulnerability 

that became public in our data was in June 2002. 
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Figure 3  Organizations Operating with Fixed Severe Security Vulnerabilities 

 
 

Notes: Figure 3 plots the fraction of organizations in our broad panel between Jan 2000 

and August 2018. The determination of when a severe security vulnerability was fixed is by the 

Apache Software Foundation. The first severe vulnerability fix release date in our data is 

September 1998. 

 
  

An example observation window 
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Figure 4  Heterogeneity in Operating with Fixed Severe Security Vulnerabilities 

(a) Existing websites vs. new websites (b) Large vs. small organizations 

  

(c) Geography (d) Industry 

  

Notes: Panels (b), (c), and (d) include observations from organizations that have their 

information in the Mint Global database. The number of such organizations is 145,515 (96% of 

the broad panel). The classification of industries is by two-digit NAICS code. The rest of the 

notes of Figure 3 apply. 

 

 
 
 
 



 45 

 
 

Table 1 Summary of Samples and Data Sources 

 Data Description Frequency Source 
 
Key samples and data sources 
 
(i)(a) Broad panel of 

organizations’ 
Apache web server 
usage 

The version of the Apache web server of 
150,854 homepages of US organizations 

Monthly between Jan 1, 2000, and 
August 31, 2018; 4,863,383 
observations in total; on average, 
each organization has 32 
observations.27 

The Internet 
Archive  
 

(i)(b) Restricted panel of 
organizations’ 
Apache web server 
usage(frequent 
captures, 
uncensored) 
 

The version of the Apache web server of 
70,092 homepages of US organizations that 
were frequently captured by the Internet 
Archive;28 each observation is not from a 
left-censored updating cycle and is not the 

Monthly between Jan 1, 2000, and 
August 31, 2018; 3,104,455 
observations in total; on average, 
each organization has 44 
observations.30 
 

The Internet 
Archive 
 

 
27 If an organization’s website only became active after Jan 1, 2000, or went offline before Dec 31, 2018, the months before the website went online and the 
months after the website went offline do not have observations. For some organizations, the Internet Archive did not capture the active websites every month. 
Therefore, those months do not have observations. In addition, some organizations have used other web servers (such as Microsoft’s IIS or Nginx) during the 
period. Those observations are not included. 
 
28 We only include organizations that were, on average, captured by the Internet Archive every three months or more frequently. Moreover, we only have 
organizations with at least ten monthly observations of Apache web server usage. Doing so allows us to observe organizations’ upgrading decisions over a 
duration equal to at least two average release cycles of the Apache web server software, as the average release cycle of an Apache web server is 4.5 months. We 
then drop an observation if the time gap between the observation and the following observation of the organization is more than 4.5 months apart. 
 
30 Footnote 22 applies. 
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last observation of Apache usage of the 
organization in the raw data29 

(ii) Apache web server 
security 
vulnerabilities 

Security vulnerability reported to the 
Apache Software Foundation; variables 
include the version(s) affected, date of 
reporting, the date the vulnerability was 
made public, date of release and version of 
the fix, and (when available) who was 
credited with the discovery/reporting of the 
vulnerability 

158 unique vulnerabilities; 5,192 
vulnerability-version pairs; for 
vulnerabilities reported before or on 
August 31, 2018 

The Apache 
Foundation 

(iii) Severity of security 
vulnerabilities 

Severity rating of “high,” “medium,” or 
“low” for each security vulnerability; 
breakdown scores for the impact and 
exploitability of each vulnerability are also 
available 

28 vulnerabilities were rated “high,” 
123 were rated “medium,” and 7 were 
rated “low.” 

National 
Vulnerability 
Database (NVD)  

(iv) Apache web server 
version release dates 
 

The release date of each minor version 
(e.g., 2.4.1) of the Apache web server 
software 

115 releases of minor versions 
between 2000 and 2018; those minor 
versions belong to six different major 
versions (e.g., 2.4) 

Authors’ 
compilation 

(v) Apache version 
change logs 
 

The number of changes implemented in 
each release of a minor version; combined 
with (ii), we can identify the number of 
changes corresponding to fixing severe 
vulnerabilities, fixing non-severe bugs, and 
improving the features 
 

 The Apache 
Foundation 

(vi) Release window 
cross section of 
organizations’ 

Organizations’ responses to releases of new 
Apache versions that fixed severe security 
vulnerabilities in their used versions; 

Cross-sectional; each observation 
corresponds to one organization 
during one six-month release 

Authors’ 
construction 

 
29 Our survival models account for time-dependent covariates that vary monthly. Left-censoring due to the first data capture is problematic for all observations 
associated with the left-censored updating cycles in determining the time-to-update. Right-censoring due to the last data capture is only difficult for the final 
observation of the organization’s Apache usage in determining whether updating has happened during the final observed month. We, therefore, drop the 
problematic observations. 
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responses to bug 
fixes 

responses are measured in the six-month 
window following each release, and fall 
into three categories: frontier chaser 
(installing the release within two months), 
do-something (installing within six 
months), and do-nothing (not installing 
within six months) 

window; 161,106 observations in 
total from 55,558 organizations and 
15 six-month release windows; we 
only include releases that fixed severe 
security vulnerabilities and that were 
at least six months apart from the next 
such releases 
 

based on data 
items (1)(b)-(v) 

Additional covariates 
 
(vii) Alexa web traffic 

ranking 
Ranking of top one million websites by 
traffic 
 

Yearly between 2010 and 2018 
 

Alexa 

(viii) Organizations’ IT 
operations 

Characteristics of US organizations’ IT 
operations; variables include the number of 
personal computers, the number of IT staff, 
IT budget, and software budget 
 

A cross-sectional snapshot of the 
database in 2017 

Harte Hanks 

(ix) Organizations’ IT 
sourcing 

Whether the organization has outsourced its 
IT operations 

The database contains the IT sourcing 
variable yearly between 2005 and 
2009 for a small group of 
organizations; we consider an 
organization to have outsourced its IT 
operations if it has outsourced in one 
or more years during 2005—2009  

Harte Hanks 

(x) Websites’ cloud 
usage 

Whether an organization’s web server has 
used an IP address associated with AWS, 
Azure, or Google Cloud 
 

 For AWS, Azure, and Google usage, 
we use snapshots of all IP addresses 
associated with those services taken 
on March 25, 2020, August 13, 2023, 
and August 14, 2023 respectively. 
 

AWS, Microsoft, 
and Google 

(xi) 
 

Websites’ 
technology use 

Technologies used in building 24,263 
organizations’ homepages; 45 technology 
categories, including analytics, e-

The data was captured between 2016 
and 2018; we consider the website to 
have used a particular technology if 

HTTP Archive 
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 commerce, and web frameworks; 531 
technologies, including jQuery, Google Tag 
Manager, and WordPress 

we observe the usage of the 
technology anytime during 2016—
2018  
 

(xii) Disclosures of data 
breaches 

2,366 data breaches disclosed between 
2005 and 2018; variables include the 
disclosing organization, the date of 
disclosure, the state and broad industry 
category the organization operates in, and 
the number of records affected 

 Privacy Rights 
Clearinghouse’s 
Data Breach 
Chronology 

(xiii) Organization 
characteristics 

214,199 organizations in the US with at 
least 50 employees; organizations are 
identified by their homepages; variables 
include location, NAICS code, number of 
employees, and revenue 

A cross-sectional snapshot of the 
database on August 28, 2018 
 
 

Mint Global by 
Bureau van Dijk 

(xiv) 
 

Organization 
characteristics 
(public firms) 

US public firms’ characteristics; variables 
include total assets, capital expenditure, 
depreciation and amortization, employees, 
cash flow, and net income 

The yearly panel between 2000 and 
2018 

Compustat 
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Table 2  Summary statistics 

Variable Obs. Mean SD Min Max 
𝑢𝑝𝑑𝑎𝑡𝑒𝑑!" 3,104,455 0.062 0.240 0 1 
𝑡𝑖𝑚𝑒𝑇𝑜𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑜𝑛𝑡ℎ𝐸𝑛𝑑!" 3,104,455 17.926 18.543 1 202 
𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! 2,701,344 0.338 0.473 0 1 
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! 2,701,344 0.287 0.453 0 1 
ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" 3,104,455 0.632 0.482 0 1 
𝑤𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑒𝑀𝑜𝑛𝑡ℎ𝑠𝑆𝑖𝑛𝑐𝑒𝐴𝑑𝑑𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔!" 3,104,455 0.189 0.391 0 1 
𝑛𝑒𝑤𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" 3,104,455 0.952 0.215 0 1 
𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" 3,104,455 0.837 0.370 0 1 
𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!" 3,049,753 0.348 0.707 0 4 
𝑛𝑜𝑛𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!" 3,049,753 1.409 1.579 0 9 
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠!" 3,049,753 20.331 21.336 0 91 
ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! 3,104,455 0.219 0.414 0 1 
𝑙𝑜𝑔𝑃𝐶𝑠! 2,522,559 4.206 1.471 0 11.458 
𝐼𝑇𝑆𝑡𝑎𝑓𝑓𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦! 2,522,337 1.457 1.417 0 9 
𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡! 2,522,559 12.816 2.539 0 23.575 
𝑙𝑜𝑔𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! 2,522,559 11.103 2.421 0 22.222 
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! 711,441 0.171 0.377 0 1 
𝑐𝑙𝑜𝑢𝑑!" 3,104,455 0.022 0.147 0 1 
𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! 665,360 10.047 3.849 1 22 
𝑡𝑒𝑐ℎ𝑠! 665,360 13.520 6.104 1 38 
𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠! 665,360 2.842 2.240 0 15 
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 3,104,455 0.490 1.343 0 18 
𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 3,104,455 1.630 3.916 0 21.822 
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𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" 3,104,455 2.171 3.878 0 31 
𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" 3,104,455 4.178 5.885 0 21.822 
𝑠𝑡𝑎𝑡𝑒! 3,019,376     
𝑛𝑎𝑖𝑐𝑠! 2,958,680     
𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡! 3,026,268 5.339 1.196 3.932 14.715 
𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒! 3,026,268 9.213 2.802 0 20.031 
𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!# 3,104,455 0.027 0.161 0 1 
𝑙𝑜𝑔𝐶𝑎𝑝𝑥𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# 82,935 8.635 3.416 -5.690 17.015 
𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# 82,935 6.482 2.859 0 14.604 
𝑙𝑜𝑔𝑇𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑒𝑡𝑠𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# 82,935 19.469 3.886 0 28.424 
𝑙𝑜𝑔𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# 82,935 15.332 4.556 0 24.029 
𝑙𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# 82,935 5.346 16.082 -

23.779 

24.455 
𝑙𝑜𝑔𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# 80,701 0.008 0.215 -2.534 1.825 

 

Notes: Each observation represents one month in an updating cycle of an organization that used Apache server software. The 

number of organizations in this data is 70,092. The event is making an update of the version of Apache server software an 

organization used. The number of events is 191,106. The number of updating cycles is 308,689. 308,689 – 191,106= 117,583 updating 

cycles are right-censored.
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Table 3 Sequential logit regressions of cross-sectional determinants of user decisions 

      
 Sequential logit regression  Sequential logit regression 
  (1) (2)  (3) (4) 
 DN/DS vs FC DN vs DS  DN/DS vs FC DN vs DS 
           
𝑖𝑛𝑓𝑟𝑒𝑞𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! 0.167*** 0.192***  0.169** 0.0490 
 (0.0402) (0.0420)  (0.0795) (0.0694) 
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! -0.239*** -0.0987***  -0.195** -0.226*** 
 (0.0445) (0.0353)  (0.0908) (0.0719) 
𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡! 0.0379** 0.0122  0.0254 0.00790 
 (0.0163) (0.0179)  (0.0326) (0.0282) 
𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒! -0.00138 0.000733  -0.00897 0.00232 
 (0.00877) (0.00785)  (0.0132) (0.0132) 
𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!# -0.0646 0.0616  -0.0373 -0.00897 
 (0.0786) (0.0801)  (0.121) (0.116) 
𝑙𝑜𝑔𝑃𝐶𝑠! 0.0445 0.0171  0.0166 0.0458 
 (0.0298) (0.0316)  (0.0573) (0.0654) 
𝐼𝑇𝑆𝑡𝑎𝑓𝑓𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦! -0.0120 -0.00805  0.00644 -0.0165 
 (0.0253) (0.0287)  (0.0372) (0.0403) 
𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡! -0.0377 -0.0595  0.0398 -0.00401 
 (0.0450) (0.0400)  (0.0910) (0.0839) 
𝑙𝑜𝑔𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! 0.0399 0.0679  -0.0524 -0.0105 
 (0.0446) (0.0468)  (0.0823) (0.0856) 
ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! 0.153*** -0.0155  0.0260 0.0168 
 (0.0509) (0.0480)  (0.0748) (0.0795) 
𝑐𝑙𝑜𝑢𝑑!" -0.138 -0.577***  -0.128 -0.505*** 
 (0.119) (0.103)  (0.198) (0.174) 
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" -0.0492 0.0208  -0.100 0.0332 
 (0.0482) (0.0495)  (0.0665) (0.0621) 
𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 0.0488 0.0249  0.0667** 0.0263 
 (0.0312) (0.0239)  (0.0319) (0.0283) 
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" -0.00496 0.0560***  0.00569 0.0232 
 (0.0181) (0.0214)  (0.0320) (0.0378) 
𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" -0.0131 0.0207***  0.0202 0.0396*** 
 (0.0114) (0.00691)  (0.0129) (0.0127) 
      
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 1 &    0.118 0.145 
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0    (0.166) (0.169) 
      
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 0 &    0.0658 -0.00625 
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0    (0.0658) (0.0678) 
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𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠!    0.0144 0.0245 
    (0.0206) (0.0186) 
𝑡𝑒𝑐ℎ𝑠!    -0.00826 -0.0152 
    (0.0131) (0.0146) 
𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠!    -0.00348 -0.0118 

    (0.0265) (0.0279) 
Constant 1.681*** 1.281***  2.103*** 0.809** 

 (0.126) (0.125)  (0.322) (0.326) 
State dummies Y Y  Y Y 
Industry dummies Y Y  Y Y 

      
Observations 108,385 108,385  26,540 26,540 
    

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered by state and industry. 

Columns (1) and (2) belong to the same regression. Columns (3) and (4) belong to the same 

regression. The value at the beginning of the observation window is used for each variable with 

time subscript 𝑡 for month or 𝑦 for year. For the variable 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑!, the dropped category is 

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 1, where the variable is missing. 
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Table 4 Cox proportional hazards analysis of updating decisions 

 Cox proportional hazards regressions 

      Public firms 
   Stratified Stratified Stratified Stratified 
 (1) (2) (3) (4) (5) (6) 

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠() -0.174*** -0.263*** 0.067*** 0.003 0.160*** 0.381 
 (0.005) (0.015) (0.007) (0.009) (0.051) (0.246) 

𝑤𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑒𝑀𝑜𝑛𝑡ℎ𝑠𝑆𝑖𝑛𝑐𝑒𝐴𝑑𝑑𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔()    0.214***   
    (0.009)   

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠() × ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010(     -0.054 0.099 
     (0.037) (0.179) 
       
ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠() × 𝑐𝑙𝑜𝑢𝑑()     0.022 0.457 
     (0.086) (0.359) 
       
ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠() × 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠(     -0.006 -0.022 
     (0.005) (0.024) 
       
ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠() ×𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠(     -0.009 -0.062 
     (0.008) (0.043) 
𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒() 0.266*** 0.322*** 0.680*** 0.796*** 0.604*** 0.519 

 (0.008) (0.025) (0.009) (0.011) (0.069) (0.323) 

𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑()    0.008   
    (0.005)   

𝑛𝑜𝑛𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑()    -0.012***   
    (0.002)   

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠()    -0.007***   
    (0.0002)   

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒()
× ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010( 

    0.157*** 0.726*** 

     (0.049) (0.230) 
       
𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒() × 𝑐𝑙𝑜𝑢𝑑()     0.292** 0.221 
     (0.136) (0.453) 
       
𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒()

× 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠( 
    -0.008 -0.058* 

     (0.006) (0.034) 
       
𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒()

×𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠( 
    0.022* 0.123** 

     (0.012) (0.064) 
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𝑛𝑒𝑤𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒() 0.076*** -0.063 0.370*** 0.422*** 0.273*** 0.187 
 (0.013) (0.042) (0.014) (0.015) (0.039) (0.198) 
𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟(  -0.120***     

  (0.015)     

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟(  0.185***     
  (0.015)     

𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡(  -0.008     
  (0.006)     

𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒(  0.003     
  (0.003)     

𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐(  -0.058     
  (0.028)     

ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010(  0.053**     
  (0.014)     

𝑐𝑙𝑜𝑢𝑑()  0.009   -0.460*** -0.351 
  (0.034)   (0.132) (0.459) 

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠(  -0.013**     
  (0.004)     

𝑡𝑒𝑐ℎ𝑠(  0.004     
  (0.003)     

𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠(  0.012*     
  (0.004)     

𝑙𝑜𝑔𝑃𝐶𝑠(  -0.017     
  (0.010)     

𝐼𝑇𝑆𝑡𝑎𝑓𝑓𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦(  0.015     
  (0.008)     

𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡(  -0.011     
  (0.019)     

𝑙𝑜𝑔𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡(  0.010     
  (0.019)     

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒()  -0.038***     
  (0.008)     

𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒()  -0.011***     
  (0.002)     

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑()  -0.027***     
  (0.003)     

𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑()  -0.013***     
  (0.001)     

𝑙𝑜𝑔𝐶𝑎𝑝𝑥𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡()      -0.041 
      (0.029) 
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𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡()      0.037 
      (0.027) 

𝑙𝑜𝑔𝑇𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑒𝑡𝑠𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡()      -0.252** 
      (0.078) 

𝑙𝑜𝑔𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡()      -0.026 
      (0.040) 

𝑙𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡()      -0.000 
      (0.003) 

𝑙𝑜𝑔𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡()      0.159 
      (0.313) 

State dummies N Y N N N N 
Industry dummies N Y N N N N 
Observations 3,104,455 548,959 3,104,455 3,049,753 665,360 44,955 

 
Notes: *p<0.1; **p<0.05; ***p<0.01. Each observation represents one month in an updating cycle of an organization 
that used Apache server software. The event is the decision to update the version of Apache server software. 
Standard errors are clustered at the organization level. 
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Appendix A1. Variable Definitions 
Table A1 Variable definitions 

Variable Definition 
 
𝑢𝑝𝑑𝑎𝑡𝑒𝑑!" 

 
Binary if organization 𝑖 makes an update to the 
Apache server software in month 𝑡; an update happens 
in month 𝑡	either when the organization uses a higher 
major version in the next observed month (e.g., the 
organization uses Apache 2.2 then changes to Apache 
2.4) or when the organization uses a higher minor 
version in the next observed month (e.g., the 
organization uses Apache 2.2.10 then changes to 
2.2.11) 

 
𝑡𝑖𝑚𝑒𝑇𝑜𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑜𝑛𝑡ℎ𝐸𝑛𝑑!" 

 
The number of months since organization 𝑖’s previous 
update of Apache server software 
 

𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! Binary if organization 𝑖 did not update server software 
even once in the first nine observations of Apache 
usage (Apache on average releases a new minor 
version once every 4.5 months for a major version); 
the variable is undefined for the first nine observations 
of Apache usage of each organization because those 
observations are used to construct the variable. 
 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! Binary if of the organization 𝑖 updated server software 
two or more times in the first nine observations of 
Apache usage; the variable is undefined for the first 
nine observations of Apache usage of each 
organization because those observations are used to 
construct the variable. 
 

 
ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" 

 
Binary if the minor version of Apache software (e.g., 
Apache 2.2.10) organization 𝑖 used in the month 𝑡 that 
publicly disclosed severe security vulnerabilities. 
 

𝑤𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑒𝑀𝑜𝑛𝑡ℎ𝑠𝑆𝑖𝑛𝑐𝑒𝐴𝑑𝑑𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔!" Binary if the minor version of Apache software 
organization 𝑖 used in month 𝑡 had additional severe 
security vulnerabilities disclosed within three months 
before month	𝑡  
 

𝑛𝑒𝑤𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" Binary if a newer Apache version than organization 𝑖’s 
adopted version in month 𝑡 was available in that 
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month; for example, the variable is equal to 1 if 
organization 𝑖 used in month 𝑡 version 2.2.x released 
in month 𝑡$ < 𝑡, and 2.4.y was released after 𝑡′ and 
was available at 𝑡 
 

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" Binary if a newer Apache minor version than 
organization 𝑖’s adopted version in month 𝑡 was 
available in that month; for example, the variable is 
equal to 1 if organization 𝑖 used in month 𝑡 version 
2.2.10 released in month 𝑡$ < 𝑡, and 2.2.11 was 
released after 𝑡′ and was available at 𝑡 
 

𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!" The number of severe security vulnerabilities the 
oldest new minor version has fixed; for example, if 
organization 𝑖 used in month 𝑡 version 2.2.10 released 
in month 𝑡$ < 𝑡, and 2.2.11, 2.2.12, and 2.2.13 were 
released after 𝑡′ and were available at 𝑡, this variable 
captures the number of severe security vulnerabilities 
fixed in 2.2.11; if there are not new minor version 
available in month 𝑡, this variable is set to zero 
 

𝑛𝑜𝑛𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!" The number of non-severe bugs the oldest new minor 
version has fixed; for example, if organization 𝑖 used 
in month 𝑡 version 2.2.10 released in month 𝑡$ < 𝑡, 
and 2.2.11, 2.2.12, and 2.2.13 were released after 𝑡′ 
and were available at 𝑡, this variable captures the 
number of nonsevere bugs fixed in 2.2.11; if there are 
not new minor version available in month 𝑡, this 
variable is set to zero 
 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠!" The number of feature changes the oldest new minor 
version has implemented; for example, if organization 
𝑖 used in month 𝑡 version 2.2.10 released in month 
𝑡$ < 𝑡, and 2.2.11, 2.2.12, and 2.2.13 were released 
after 𝑡′ and were available at 𝑡, this variable captures 
the number of feature changes in 2.2.11; if there are 
not new minor version available in month 𝑡,, this 
variable is set to zero. 
 

ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! Binary, =1 if the organization 𝑖’s website was ranked 
by Alexa in the top 1 million websites in 2010  
 

𝑙𝑜𝑔𝑃𝐶𝑠! Logged value of (number of personal computers+1) at 
organization 𝑖 in 2017 according to Harte Hanks; if 
organization 𝑖 has multiple establishments, we only 
use the number of personal computers at the 
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establishment with the highest number of IT staff and 
IT budget. 
 

𝐼𝑇𝑆𝑡𝑎𝑓𝑓𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦! The number of IT staff at organization 𝑖 in 2017 
according to Harte Hanks; if organization 𝑖 has 
multiple establishments, we only use the value at the 
establishment with the highest number of IT staff and 
IT budget; this variable is categorical, it = 0 if IT staff 
is equal to 0, = 1 if IT staff is between 1 to 4,  = 2 if 
IT staff is between 5 to 9, = 3 if IT staff is between 10 
to 24, = 4 if IT staff is between 25 to 49, = 5 if IT 
staff is between 50 to 99, = 6 if IT staff is between 
100 to 249, = 7 if IT staff is between 250 to 499, = 8 
if IT staff is between 500 to 999, = 9 if IT staff is 
1000 and above 
 

𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡! Logged value of (IT budget+1) at organization 𝑖 in 
2017 according to Harte Hanks; if organization 𝑖 has 
multiple establishments, we only use the IT budget at 
the establishment with the highest number of IT staff 
and IT budget. 
 

𝑙𝑜𝑔𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! Logged value of (software budget+1) at organization 𝑖 
in 2017, according to Harte Hanks; if organization 𝑖 
has multiple establishments, we only use the software 
budget at the establishment with the highest number of 
IT staff and IT budget. 
 

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! 
 

Binary if organization 𝑖 has outsourced its IT at least 
once between 2005 and 2009, from Harte Hanks. 
 

𝑐𝑙𝑜𝑢𝑑!" Binary if organization 𝑖’s website in month 𝑡	used an 
IP address that belongs to AWS on March 25, 2020, 
Azure on August 13, 2023, or Google Cloud on 
August 14, 2023; data on historical  IP addresses of 
cloud providers are not readily available. 
 

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! The number of technology categories embedded in 
organization 𝑖’s website between 2016 and 2018; 
examples of technology categories include analytics, 
e-commerce, and web frameworks. 
 

𝑡𝑒𝑐ℎ𝑠! The number of technologies embedded in organization 
𝑖’s the website between 2016 and 2018; examples 
include jQuery, Google Tag Manager, and WordPress. 
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𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠! The number of monetization technologies embedded 
in organization 𝑖’s. website between 2016 and 2018; 
technologies in “analytics,” “tag managers,” 
“advertising networks,” “marketing automation,” “e-
commerce,” and “payment processors” categories are 
included; measures monetization intent. 
 

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" The number of data breaches that have been disclosed 
in the month before month 𝑡 in the state where 
organization 𝑖’s headquarters are located. 
 

𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" Logged value of (the sum of the number of records 
affected+1) for data breaches that have been disclosed 
in the month before month 𝑡 in the state where 
oganization 𝑖’s headquarters are located. 
 

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" The number of data breaches that have been disclosed 
in the month before month 𝑡 in the broad industry 
category that other organization	𝑖	operates in; broad 
industry categories in the Data Breach Chronology 
data are Healthcare and Medical Providers (Hospitals, 
Medical Insurance Services), Businesses 
(Retail/Merchant including Grocery Stores, Online 
Retailers, Restaurants), Businesses (Financial 
Services, Banking, Insurance Services), Businesses 
(Manufacturing, Technology, Communications, 
Other), Educational Institutions (Schools, Colleges, 
Universities) 
 

𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" Logged value of (the sum of the number of records 
affected plus1) for data breaches that have been 
disclosed in the month before month 𝑡 in the broad 
industry category that other organizations operate in; 
broad industry categories in the Data Breach 
Chronology data are Healthcare and Medical 
Providers (Hospitals, Medical Insurance 
Services), Businesses (Retail/Merchant including 
Grocery Stores, Online Retailers, 
Restaurants), Businesses (Financial Services, Banking, 
Insurance Services), Businesses (Manufacturing, 
Technology, Communications, Other), Educational 
Institutions (Schools, Colleges, Universities) 
 

𝑠𝑡𝑎𝑡𝑒! State, where the organization’s headquarter is located 
 

𝑛𝑎𝑖𝑐𝑠! 
 

The organization 𝑖’s a two-digit primary NAICS code. 
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𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡! Logged value of (employment+1) of organization 𝑖; 
from the cross-sectional Mint Global sample of 
organizations, a single value is associated with an 
organization. 
 

𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒! Logged value of (revenue+1) of organization 𝑖; if 
revenue is negative, this variable is equal to −1 ×
log	(𝑎𝑏𝑠(𝑟𝑒𝑣𝑒𝑛𝑢𝑒) + 1); from Mint Global. 
 

𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!# Binary if organization 𝑖 is a public firm in year 𝑦. 
 

𝑙𝑜𝑔𝐶𝑎𝑝𝑥𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# Logged value of (capital expenditure+1) of 
organization 𝑖 in year 𝑦; from Compustat, this variable 
is only available for public firms. 
 

𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# Logged value of (employment+1) of organization 𝑖 in 
year 𝑦; from Compustat, this variable is only available 
for public firms. 
 

𝑙𝑜𝑔𝑇𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑒𝑡𝑠𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# Logged value of (total assets+1) of organization 𝑖 in 
year 𝑦; from Compustat, this variable is only available 
for public firms. 
 

𝑙𝑜𝑔𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# Logged value of (depreciation and amortization+1) of 
organization 𝑖 in year 𝑦; from Compustat, this variable 
is only available for public firms. 
 

𝑙𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# Logged value of (income before extraordinary 
items+1) of organization 𝑖 in year 𝑦; if income is 
negative, this variable is equal to −1 ×
log	(𝑎𝑏𝑠(𝑖𝑛𝑐𝑜𝑚𝑒) + 1); from Compustat, this 
variable is only available for public firms. 
 

𝑙𝑜𝑔𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# Logged value of (cashflow+1) of organization 𝑖 in 
year 𝑦; if cashflow is negative, this variable is equal to 
−1 × log	(𝑎𝑏𝑠(𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤) + 1); from Compustat, 
this variable is only available for public firms. 
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Table A2. Correlation Matrix of Measures 

  Variables   (1)   (2)   (3)   (4)   (5)   (6)   (7)   (8)   (9)   (10)   (11)   (12)   (13)   (14)   (15)   (16)   (17)   (18) 
(1) ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" 1.00 
(2) 𝑤𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑒𝑀𝑜𝑛𝑡ℎ𝑠𝑆𝑖𝑛𝑐𝑒𝐴𝑑𝑑𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔!" 0.30 1.00 
(3) 𝑛𝑒𝑤𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" 0.24 0.06 1.00 
(4) 𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" 0.43 0.10 0.53 1.00 
(5) ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! 0.04 0.00 0.02 0.03 1.00 
(6) 𝑙𝑜𝑔𝑃𝐶𝑠! 0.05 0.00 0.02 0.04 0.14 1.00 
(7) 𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡! 0.03 0.01 0.01 0.03 0.08 0.73 1.00 
(8) 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! -0.02 0.00 0.00 -0.01 -0.05 -0.12 -0.10 1.00 
(9) 𝑐𝑙𝑜𝑢𝑑!" -0.12 -0.04 -0.00 -0.01 -0.00 -0.01 0.01 0.00 1.00 
(10) 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! -0.02 -0.02 0.01 0.02 0.17 0.01 -0.02 0.01 0.06 1.00 
(11) 𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠! 0.01 0.01 0.00 0.00 0.24 0.05 0.05 -0.00 0.04 0.45 1.00 
(12) 𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" -0.06 -0.08 0.03 0.04 0.01 0.00 0.01 -0.00 0.14 0.02 -0.02 1.00 
(13) 𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" -0.03 -0.08 0.03 0.03 0.01 -0.00 0.01 -0.00 0.11 0.02 -0.02 0.68 1.00 
(14) 𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" -0.08 -0.14 0.05 0.06 -0.04 -0.03 -0.01 0.00 0.16 0.05 -0.02 0.29 0.22 1.00 
(15) 𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" -0.02 -0.15 0.06 0.07 -0.03 0.02 0.01 -0.01 0.10 0.04 -0.03 0.19 0.21 0.65 1.00 
(16) 𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡! 0.04 0.01 0.01 0.02 0.12 0.48 0.51 -0.09 0.00 -0.06 -0.01 -0.00 -0.00 -0.02 -0.00 1.00 
(17) 𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒! 0.02 0.00 0.00 0.01 0.11 0.27 0.35 -0.05 0.02 0.03 0.03 0.02 0.03 -0.00 -0.01 0.58 1.00 
(18) 𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!# 0.01 0.01 0.01 0.01 0.01 0.09 0.28 0.00 0.05 0.00 0.03 0.03 0.02 0.03 0.01 0.32 0.29 1.00 
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Appendix A2. Kaplan-Meier Curve for Continued Usage of 
Software Versions 

Figure A1 visualizes the relationship between the time-to-update and the presence of 

severe security vulnerabilities with Kaplan-Meier survival curves. The horizontal axis shows the 

number of months an organization has been using a particular server software version. The 

vertical axis shows the probability that the organization is still using that software version at each 

time interval. We split the observations into those impacted by publicly disclosed severe security 

vulnerabilities (dashed line) and those not (solid line). For example, this figure shows that 27% 

of observations affected by publicly disclosed severe security vulnerabilities continued using the 

same version after 30 months, whereas 22% of observations not impacted by publicly disclosed 

severe security vulnerabilities continued using the same version. 

The association displayed in Figure A1, however, suffers from reverse causality. The plot 

suggests that operating software with a severe security vulnerability is associated with updating 

in a less timely manner. Organizations that update software less frequently are more likely to 

accumulate bugs over time. This would make the decision to update and the presence of security 

vulnerabilities appear negatively correlated. Therefore, in our analysis in Table 4 column (3), we 

control for organizations’ baseline propensity to update their software using stratefication. 
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Figure A1. Kaplan-Meier survival curve for the continued usage of software versions with and 
without severe security vulnerabilities 
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Appendix A3. Additional Justification for Stratification 
In this appendix, we discuss further justifications for stratifying by organization.  

A standard way to test whether stratifying by a given independent variable is needed in a 

Cox proportional hazard regression is to perform a test of the proportional hazards (PH) 

assumption. The PH assumption of the Cox model states that one individual's hazard function is 

proportional to another's. If a predictor does not satisfy the PH assumption, one can control for 

that predictor by stratifying that predictor (Kleinbaum and Klein, 1996). Testing the PH 

assumption based on weighted residuals (Grambsch and Therneau, 1994) is widely used and 

implemented in statistical packages for Cox proportional hazard analysis. For our analysis, we 

use the built-in cox.zph function in the survival package in R. 

Ideally, to test if we need to stratify on the level of organizations, we should include the 

full set of organization dummies in a Cox model fit and determine whether the PH assumption is 

satisfied for each organization dummy. Given that our sample has 70,092 organizations, running 

Cox regressions with many variables is computationally challenging. We, therefore, test one 

organization dummy at a time. We run a Cox regression with a single organization dummy at a 

time and test whether the PH assumption is satisfied for that dummy.  Suppose the p-value of 

that test is smaller than the 0.1 thresholds. In that case, we can reject at a 10% significance the 

hypothesis that the hazard function for that organization is proportional to the hazard function for 

other organizations.  

We perform model fitting and testing of the PH assumption for a random 5% sample of 

our 70,092 organizations. Overall, we find that 1.7% of organization dummies have p-values 

smaller than 0.01, 7.8% have p-values smaller than 0.05, and 15.0% have p-values smaller than 

0.1. We plot the distribution of p-values in Figure A3. It is visually evident that a substantial 

proportion of organization dummies do not satisfy the PH assumption. To control for 

organization effects in Cox regressions, we stratify by the organization. 

We note that there are many approaches for model selection based on the likelihood of 

nested and non-nested Cox models, such as the likelihood ratio test, the Akaike information 

criterion, and so on (Fine, 2002). These approaches are inappropriate for deciding whether a 
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stratified Cox model should be preferred over an unstratified one. The reason is that a stratified 

Cox model maximizes a different partial likelihood function than an unstratified Cox model. For 

example, for a standard unstratified Cox model without time-varying covariates, the partial 

likelihood function the estimation procedure maximizes is 

𝐿)(𝒃) = ∏ g 89:+,!-$!&⋯&,&-$&/
∑ 89:+,!-*!&⋯&,&-*&/*∈,-.$/

h
<$

! , 

where 𝑑! is the event, 𝑡! is the survival time of individual 𝑖, and 𝑅(𝑡!) = {𝑘: 𝑡= > 𝑡!} is the risk 

set at time 𝑡!. 

For a Cox model stratified at level 𝑙 and without time-varying covariates, the partial 

likelihood function the estimation procedure maximizes is  

𝐿)(𝒃) = ∏ ∏ g 89:+,!-$!&⋯&,&-$&/
∑ 89:+,!-*!&⋯&,&-*&/*∈,0-.$/

h
<$

!∈?0@ , 

where 𝐴@ is the set of individuals in stratum 𝑙, and 𝑅@(𝑡!) is the risk set for individuals in stratum 

𝑙. When the number of strata equals 1, this likelihood function reduces to the likelihood function 

for the unstratified model. When the number of strata is greater than 1, since the denominators in 

this likelihood function are summed over a subset of the sample of individuals and are smaller, 

this likelihood is mechanically larger than the likelihood for the unstratified model at any given 𝑏 

and 𝑋. 
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Figure A2 Distribution of p-values of tests of proportional hazards (PH) assumption 

 

 

Notes: We fit Cox regressions with one organization dummy at a time for a random 5% 

sample of our sample of 70,092 firms. We then test whether the organization dummy satisfies the 

PH assumption. 3,505 model fits correspond to 3,505 unique organizations in that 5% sample. 

The figure plots the distribution of the p-values from the PH assumption tests. 
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Appendix A4. Robustness to Excluding OS Specific 
Vulnerabilities 

In the following tables, we drop Apache vulnerabilities that exclusively impact a specific 

operating system. For the sequential logit regressions, we exclude event windows around the 

releases of fixes to operating system-specific vulnerabilities. For the survival analysis, we 

exclude operating system-specific vulnerabilities in the construction of the ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" 

variable. 

Table A3 Sequential logit regressions of cross-sectional determinants of user decisions 

      
 Sequential logit regression  Sequential logit regression 
  (1) (2)  (3) (4) 
 DN/DS vs FC DN vs DS  DN/DS vs FC DN vs DS 
           
𝑖𝑛𝑓𝑟𝑒𝑞𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! 0.152*** 0.188***  0.135* 0.0392 
 (0.0411) (0.0461)  (0.0780) (0.0757) 
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! -0.236*** -0.105***  -0.210** -0.244*** 
 (0.0449) (0.0393)  (0.0999) (0.0802) 
𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡! 0.0346** 0.00928  0.0115 0.00201 
 (0.0171) (0.0185)  (0.0333) (0.0306) 
𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒! -0.000832 0.00164  -0.00471 0.00114 
 (0.00940) (0.00737)  (0.0131) (0.0136) 
𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!# -0.0720 0.0962  -0.0704 0.0389 
 (0.0848) (0.0942)  (0.119) (0.129) 
𝑙𝑜𝑔𝑃𝐶𝑠! 0.0438 0.0269  0.0176 0.0656 
 (0.0307) (0.0299)  (0.0575) (0.0669) 
𝐼𝑇𝑆𝑡𝑎𝑓𝑓𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦! -0.0115 -0.0165  0.00920 -0.0224 
 (0.0243) (0.0293)  (0.0364) (0.0421) 
𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡! -0.0330 -0.0667*  0.0205 -0.0428 
 (0.0446) (0.0406)  (0.0967) (0.0844) 
𝑙𝑜𝑔𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! 0.0359 0.0747  -0.0333 0.0215 
 (0.0445) (0.0454)  (0.0866) (0.0868) 
ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! 0.118** -0.0262  -0.00695 0.0124 
 (0.0566) (0.0488)  (0.0881) (0.0825) 
𝑐𝑙𝑜𝑢𝑑!" -0.213* -0.579***  -0.183 -0.545*** 
 (0.124) (0.0958)  (0.208) (0.171) 
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 0.0134 0.0340  -0.0410 0.0324 
 (0.0471) (0.0492)  (0.0714) (0.0657) 
𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 0.0365 0.0226  0.0567* 0.0279 
 (0.0271) (0.0242)  (0.0323) (0.0294) 
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" 0.00192 0.0528**  -0.000916 0.0205 
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 (0.0222) (0.0211)  (0.0343) (0.0381) 
𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" -0.0131 0.0203***  0.0244* 0.0397*** 
 (0.0128) (0.00725)  (0.0142) (0.0130) 
      
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 1 &    0.175 0.172 
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0    (0.180) (0.160) 
      
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 0 &    0.0486 0.0251 
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0    (0.0731) (0.0679) 
      
𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠!    0.0136 0.0227 
    (0.0223) (0.0191) 
𝑡𝑒𝑐ℎ𝑠!    -0.00647 -0.0141 
    (0.0145) (0.0150) 
𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠!    -0.00537 -0.0154 

    (0.0278) (0.0267) 
Constant 1.661*** 1.287***  2.214*** 0.832** 

 (0.132) (0.145)  (0.350) (0.341) 
State dummies Y Y  Y Y 
Industry dummies Y Y  Y Y 

      
Observations 99,447 99,447  23,702 23,702 
    

Notes: Same as those for Table 3. 

 

Table A4 Cox proportional hazards analysis of updating decisions 

 Cox proportional hazards regressions 

      Public firms 
   Stratified Stratified Stratified Stratified 
 (1) (2) (3) (4) (5) (6) 

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" -0.323*** -0.381*** -0.092*** -0.153*** -0.005 0.301 
 (0.005) (0.014) (0.007) (0.009) (0.050) (0.240) 

𝑤𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑒𝑀𝑜𝑛𝑡ℎ𝑠𝑆𝑖𝑛𝑐𝑒𝐴𝑑𝑑𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔!"    0.144***   
    (0.009)   

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" × ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010!     -0.061 0.038 
     (0.037) (0.172) 
       
ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" × 𝑐𝑙𝑜𝑢𝑑!"     0.186* 0.659* 
     (0.086) (0.358) 
       
ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" × 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠!     -0.004 -0.032 
     (0.005) (0.023) 
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ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" ×𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠!     -0.009 -0.043 
     (0.008) (0.042) 
𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" 0.319*** 0.361*** 0.732*** 0.845*** 0.662*** 0.564* 

 (0.008) (0.024) (0.009) (0.010) (0.068) (0.317) 

𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!"    0.051***   
    (0.005)   

𝑛𝑜𝑛𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!"    -0.019***   
    (0.002)   

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠!"    -0.006***   
    (0.000)   

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!"
× ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! 

    0.154*** 0.742*** 
     (0.049) (0.225) 
       
𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" × 𝑐𝑙𝑜𝑢𝑑!"     0.234 0.156 
     (0.136) (0.453) 
       
𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" × 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠!     -0.008 -0.055 
     (0.006) (0.034) 
       
𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!"

×𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠! 
    0.021* 0.114* 

     (0.011) (0.063) 
𝑛𝑒𝑤𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" 0.073*** -0.065 0.367*** 0.412*** 0.270*** 0.179 
 (0.013) (0.042) (0.014) (0.015) (0.039) (0.198) 
𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟!  -0.115***     

  (0.015)     

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟!  0.188***     
  (0.015)     

𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡!  -0.007     
  (0.006)     

𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒!  0.003     
  (0.003)     

𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!  -0.057     
  (0.028)     

ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010!  0.055***     
  (0.014)     

𝑐𝑙𝑜𝑢𝑑!"  -0.010   -0.504*** -0.417 
  (0.034)   (0.132) (0.459) 

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠!  -0.013**     
  (0.004)     

𝑡𝑒𝑐ℎ𝑠!  0.004     
  (0.003)     

𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠!  0.013**     
  (0.004)     
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𝑙𝑜𝑔𝑃𝐶𝑠!  -0.016     
  (0.010)     

𝐼𝑇𝑆𝑡𝑎𝑓𝑓𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦!  0.014     
  (0.007)     

𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡!  -0.010     
  (0.019)     

𝑙𝑜𝑔𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡!  0.009     
  (0.019)     

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!"  -0.040***     
  (0.008)     

𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!"  -0.010***     
  (0.002)     

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!"  -0.029***     
  (0.003)     

𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!"  -0.013***     
  (0.001)     

𝑙𝑜𝑔𝐶𝑎𝑝𝑥𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!"      -0.038 
      (0.029) 

𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!"      0.033 
      (0.027) 

𝑙𝑜𝑔𝑇𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑒𝑡𝑠𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!"      -0.247** 
      (0.078) 

𝑙𝑜𝑔𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!"      -0.027 
      (0.039) 

𝑙𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!"      0.000 
      (0.003) 

𝑙𝑜𝑔𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!"      0.154 
      (0.312) 

State dummies N Y N N N N 
Industry dummies N Y N N N N 
Observations 3,104,455 548,959 3,104,455 3,049,753 665,360 44,955 

 
Notes: Same as those for Table 4 
 

Appendix A4. Robustness to Excluding Low Exploitability 
Vulnerabilities 

In the following table, we drop Apache vulnerabilities that are scored by NIST as not 

having an exploitability score of 10 out of 10. For the sequential logit regressions, we exclude 

event windows around the releases of fixes to not highly exploitable vulnerabilities. For the 
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survival analysis, we exclude not higly exploitable vulnerabilities in the construction of the 

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" variable. 

Table A5 Sequential logit regressions of cross-sectional determinants of user decisions 

      
 Sequential logit regression  Sequential logit regression 
  (1) (2)  (3) (4) 
 DN/DS vs FC DN vs DS  DN/DS vs FC DN vs DS 
           
𝑖𝑛𝑓𝑟𝑒𝑞𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! 0.179*** 0.165***  0.213** 0.0519 
 (0.0526) (0.0522)  (0.0937) (0.0883) 
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! -0.232*** -0.108**  -0.110 -0.165** 
 (0.0560) (0.0436)  (0.0969) (0.0822) 
𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡! 0.0437** 0.0125  0.0461 0.0363 
 (0.0201) (0.0267)  (0.0394) (0.0358) 
𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒! -0.00574 -0.00397  -0.0140 -0.0136 
 (0.0111) (0.00960)  (0.0176) (0.0126) 
𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!# -0.0340 0.0222  0.0349 -0.0187 
 (0.0950) (0.0915)  (0.150) (0.133) 
𝑙𝑜𝑔𝑃𝐶𝑠! 0.0306 -0.00861  -0.0377 0.0514 
 (0.0292) (0.0412)  (0.0581) (0.0658) 
𝐼𝑇𝑆𝑡𝑎𝑓𝑓𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦! -0.0103 0.0168  0.0163 -0.0211 
 (0.0275) (0.0298)  (0.0407) (0.0407) 
𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡! -0.0590 -0.0566  0.108 0.0141 
 (0.0481) (0.0443)  (0.105) (0.0987) 
𝑙𝑜𝑔𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! 0.0622 0.0650  -0.118 -0.0295 
 (0.0494) (0.0438)  (0.0998) (0.102) 
ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! 0.230*** -0.00582  0.0468 0.0404 
 (0.0733) (0.0555)  (0.0956) (0.0963) 
𝑐𝑙𝑜𝑢𝑑!" 0.613* -0.124  0.514 0.129 
 (0.364) (0.273)  (0.539) (0.398) 
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" -0.170*** 0.0129  -0.221* 0.0689 
 (0.0553) (0.0654)  (0.115) (0.101) 
𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 0.0850** 0.0378  0.101** 0.0263 
 (0.0391) (0.0248)  (0.0453) (0.0349) 
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" -0.0844** 0.0460  0.0452 0.0732 
 (0.0415) (0.0344)  (0.0828) (0.0524) 
𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" 0.0120 0.0259***  0.0173 0.0326** 
 (0.0130) (0.00961)  (0.0202) (0.0145) 
      
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 1 &    0.0703 0.162 
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0    (0.233) (0.223) 
      
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 0 &    0.125 -0.0272 
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𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0    (0.0842) (0.0773) 
      
𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠!    0.00923 0.0213 
    (0.0221) (0.0210) 
𝑡𝑒𝑐ℎ𝑠!    -0.00647 -0.0134 
    (0.0148) (0.0169) 
𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠!    0.0154 -0.00888 

    (0.0247) (0.0297) 
Constant 1.433*** 1.540***  1.853*** 0.856** 

 (0.137) (0.137)  (0.338) (0.387) 
State dummies Y Y  Y Y 
Industry dummies Y Y  Y Y 

      
Observations 70,464 70,464 18,198 18,198 70,464 
    

Notes: Same as those for Table 3. 

 

Table A6 Cox proportional hazards analysis of updating decisions 

 Cox proportional hazards regressions 

      Public firms 
   Stratified Stratified Stratified Stratified 
 (1) (2) (3) (4) (5) (6) 

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" -0.163*** -0.258*** 0.080*** 0.021** 0.207*** 0.264 
 (0.005) (0.014) (0.007) (0.009) (0.049) (0.239) 

𝑤𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑒𝑀𝑜𝑛𝑡ℎ𝑠𝑆𝑖𝑛𝑐𝑒𝐴𝑑𝑑𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔!"    0.226***   
    (0.009)   

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" × ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010!     -0.069* 0.191 
     (0.036) (0.174) 
       
ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" × 𝑐𝑙𝑜𝑢𝑑!"     -0.088 -0.507 
     (0.105) (0.503) 
       
ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" × 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠!     -0.005 -0.009 
     (0.005) (0.023) 
       
ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" ×𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠!     -0.022** -0.082* 
     (0.008) (0.041) 
𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" 0.252*** 0.305*** 0.680*** 0.800*** 0.598*** 0.581* 

 (0.008) (0.024) (0.009) (0.010) (0.068) (0.318) 

𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!"    0.007   
    (0.005)   
    -0.012***   

𝑛𝑜𝑛𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!"    (0.002)   
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    -0.007***   
    (0.000)   

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠!"    0.007   
    (0.005)   

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!"
× ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! 

    0.158*** 0.693*** 
     (0.049) (0.227) 
       
𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" × 𝑐𝑙𝑜𝑢𝑑!"     0.315** 0.364 
     (0.134) (0.447) 
       
𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" × 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠!     -0.008 -0.064* 
     (0.006) (0.034) 
       
𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!"

×𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠! 
    0.025** 0.130** 

     (0.011) (0.063) 
𝑛𝑒𝑤𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" 0.078*** -0.061 0.370*** 0.422*** 0.273*** 0.185 
 (0.013) (0.042) (0.014) (0.015) (0.039) (0.198) 
𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟!  -0.120***     

  (0.015)     

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟!  0.184***     
  (0.015)     

𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡!  -0.008     
  (0.006)     

𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒!  0.003     
  (0.003)     

𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!  -0.057     
  (0.028)     

ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010!  0.055***     
  (0.014)     

𝑐𝑙𝑜𝑢𝑑!"  -0.008   -0.456*** -0.239 
  (0.034)   (0.131) (0.458) 

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠!  -0.013**     
  (0.004)     

𝑡𝑒𝑐ℎ𝑠!  0.004     
  (0.003)     

𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠!  0.012**     
  (0.004)     

𝑙𝑜𝑔𝑃𝐶𝑠!  -0.017     
  (0.010)     

𝐼𝑇𝑆𝑡𝑎𝑓𝑓𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦!  0.015     
  (0.008)     

𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡!  -0.010     
  (0.019)     
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𝑙𝑜𝑔𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡!  0.009     
  (0.019)     

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!"  -0.038***     
  (0.008)     

𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!"  -0.012***     
  (0.002)     

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!"  -0.027***     
  (0.003)     

𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!"  -0.013***     
  (0.001)     

𝑙𝑜𝑔𝐶𝑎𝑝𝑥𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!"      0.039 
      (0.029) 

𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!"      0.037 
      (0.027) 

𝑙𝑜𝑔𝑇𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑒𝑡𝑠𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!"      -0.248** 
      (0.078) 

𝑙𝑜𝑔𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!"      -0.028 
      (0.040) 

𝑙𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!"      0.000 
      (0.003) 

𝑙𝑜𝑔𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!"      0.151 
      (0.315) 

State dummies N Y N N N N 
Industry dummies N Y N N N N 
Observations 3,104,455 548,959 3,104,455 3,049,753 665,360 44,955 

Notes: Same as those for Table 4. 


