
 1

Upgraded software and embedded improvements: A puzzle of
user heterogeneity

Raviv Murciano-Goroff, Ran Zhuo, and Shane Greenstein

August 2023

Abstract

The rise in cyberattacks over the past two decades spurred interest in policies
improving cybersecurity. One focus of that research is how to create incentives
for software vendors to release updates fixing vulnerabilities in their software. An
important consideration that has received far less attention in this literature is
understanding if software users install available software updates promptly and
the factors that may increase or decrease their responsiveness. In this paper, we
empirically investigate the propensity of firms to install software updates on the
servers running their websites. We compiled a dataset tracking the server software
used by over 150,000 medium and large firms in the United States to host their
websites between 2000 and 2018. Treating the discovery of security
vulnerabilities in the server software as quasi-natural experiments, we examine if
and when firms update their server software after the vendors of that software
disclose vulnerabilities. We uncover widespread usage of software with severe
security vulnerabilities, with nearly 76% of the firms analyzed forgoing installing
software updates that fixed severe security vulnerabilities found in their software
for at least six months after the release of such updates. Using hazard model
analysis that accounts for firms having different organizational routines for
updating, we document that usage of cloud-based platforms for hosting websites
can decrease the time to installing updates, that technical complexity on sites
slows updating, and that the disclosure of severe vulnerability fixes in software
updates does not jolt firms into installing them. Finally, we discuss how the
relative inattentiveness of firms to act on software update releases should be
incorporated into the design of cybersecurity policies.

————————————————
Murciano-Goroff: ravivmg@bu.edu, Boston University; Greenstein: sgreenstein@hbs.edu, Harvard Business School
and NBER; Ran Zhuo: ranzhuo@umich.edu, University of Michigan. We are grateful to Kenji Nagahashi and Mark
Graham from The Internet Archive for providing the data for this research, and appreciate feedback we received
from Sam Ransbotham, Ashish Arora, Ivan Png, Min Jung Kim, and seminar participants at the University of
Toronto, University of Illinois, Purdue, Wharton, and Harvard Business School. We also thank Harvard Business
School, the Ewing Marion Kauffman Foundation for providing funding for this work. The authors are pleased to
acknowledge that the computational work reported in this paper was performed on the Shared Computing Cluster,
which Boston University's Research Computing Services administer. The authors take responsibility for all errors.

 2

1. Introduction
Over the past twenty years, cyberattacks on companies have increased. An industry

survey in 2021 of Chief Information Security Officers found that the vast majority saw an

increase in disruptive cyberattacks within the past year (EY Americas, 2021). Many cyberattacks

exploit vulnerabilities in the software running on servers, the computers that host companies’

websites. These events garner media attention and spur calls for increased investment and

diligence in cybersecurity from policymakers (Barrett, 2018). In response, strategy and

information systems scholars have explored and analyzed policies aimed at improving

cybersecurity.

Most of the policies considered in this literature emphasize providing incentives for

software vendors to build secure software and to release software updates fixing security

vulnerabilities, known as patches, in a timely manner. These policies include encouraging

vendors to produce higher quality software by making software vendors liable for the cost that

users face from installing patches (August and Tunca, 2011),1 encouraging vendors to more

quickly release updates and patches by mandating the public disclosure of security vulnerabilities

(Arora, Telang, and Xu, 2008), and decreasing the potential for malicious actors to learn from

the vulnerability disclosures and patches by carefully limiting the frequency vendors release

patches and the amount of information that software vendors disclose about vulnerabilities

(Rescorla, 2004; Mitra and Ransbotham, 2015).

With its focus on incentivizing software vendors to provide software updates, the current

literature has largely taken for granted that software users will adopt and install these updates

when available.2 And yet, many cyberattacks are successful partly because companies neglected

to install available software updates that addressed security vulnerabilities in the server software

they were using (Ranger, 2019).3 For example, in 2017, the UK's National Health Service fell

1 August and Tunca (2011) study the provisioning of patches in an environment with profit-maximizing software
vendors. In the setting we study, the software is open source and created by a collective of volunteers and a non-
profit foundation. Thus, charging the “software vendor” for patch costs is not possible.
2 Most of the papers cited anticipate that some portion of software users will install available updates. While the
fraction of users that install these updates are sometimes a parameter of the models studied, to our knowledge, no
other paper has attempted to estimate the heterogeneity in that parameter or the dynamics of how users install
updates over time.
3 Other examples include Bank of America’s ATMs being out-of-service and Continental Airline’s flight being
cancelled due to cyberattacks exploiting unpatched vulnerabilities that were more than six months old (Baroudi
Bloor, 2003).

 3

victim to a cyberattack that exploited a vulnerability in their server software for which a software

update had been available—but not installed—for over a month (Acronis International, 2017;

Palmer, 2017). The cyberattack resulted in the cancellation of thousands of operations, including

those of emergency patients. In the same year, a breach of Equifax, which exposed the private

information of over 143 million individuals, occurred when hackers exploited a vulnerability in

the server software hosting the Equifax website for which a patch had been available for two

months (Goodin, 2017). In 2018, the city of Atlanta suffered a hacking incident, halting many of

the city’s departments and operations. Following the incident, an audit found 1,500 to 2,000

vulnerabilities in the city’s system, with some of the vulnerabilities being present in their system

since almost a year prior (Harvey, 2018; Goldenberg and Zlatev, 2022).

Furthermore, many of the cybersecurity policies that create incentives for software

vendors to release patches are designed according to expectations about the rate at which

software users will install those updates. Given that malicious actors are given a running start

from the time a vulnerability is announced to when a firm implements the update, mandating the

disclosure of software vulnerabilities to incentivize software vendors to release updates more

quickly may ultimately be detrimental to cybersecurity if firms are unlikely to install the updates

promptly (Arora et al., 2006; Choi et al., 2010).4 Therefore, to fully analyze and optimize

cybersecurity policies, we need an understanding of software users’ decisions regarding software

updates.

To do so, in this paper we empirically investigate the extent to which companies install

available software updates on their servers, the extent to which companies leave their web server

software insecure by forgoing available software updates, and why some companies are faster at

adopting and installing software updates than others. Leveraging detailed data on the server

software used to host the websites of over 150,000 U.S. medium to large companies and

organizations between 2000 and 2018, we analyze the frequency and timing of when those

organizations installed available software updates to their server software. We focus on

4 Arora, Nandkumar, and Telang (2006) is a good example of the need for empirical evidence of software users’
uptake of updates. In their study considering policies related to the release of patches, they note that the release of
software patches may increase the exploitation of vulnerabilities if software users do not install the updates. In the
case where users are inattentive to updates, releasing fewer or more limited software updates may be optimal. By
providing evidence on software user adoption of patches, we help fill the literature gap identified in their paper.

 4

organizations that use the Apache web server, the most popular web server software deployed in

use globally, for hosting their websites.

Web server software offers a valuable lens for understanding software improvements and

cybersecurity. Web servers are ubiquitous and critical to the modern web-based commercial

Internet. Millions of firms in the United States and hundreds of millions across the globe use web

servers to support billions of web pages, including those serving sensitive financial and personal

information (Greenstein and Nagle, 2014). Therefore, highlighting the prevalence of

vulnerabilities and the instigators of installing updates can improve cybersecurity. Besides the

cybersecurity benefits, many server software updates include features and bug fixes that improve

the experience of Internet users. Therefore, increasing the speed that companies adopt software

updates could also support economic growth and an improved user experience.

The Apache Web Server, the focus of this study, is the most popular web server software

globally and is used by millions of businesses to support their websites. Besides its importance

because of its widespread use, Apache is ideal for our study because detailed information about

its versions, updates, and vulnerabilities is publicly available. During the period studied in this

article, 28 severe vulnerabilities and 130 less severe vulnerabilities were discovered in the

Apache software. Each vulnerability reported to Apache was scored along multiple dimensions

that are visible to us. In addition, 115 software updates for the Apache server software were

released during that same time. Each of these updates was released along with a list of the

security vulnerabilities being corrected, the bugs fixed, and the new features included in the

update. Finally, as Apache is open source, each update was made freely available to anyone

online. Therefore, our analysis of the timing of installing these software updates is not

confounded by the pricing of the software or the availability of its software updates.

Our unique dataset that tracks the server software was culled from raw data from the

Internet Archive’s Wayback Machine, which has routinely visited millions of websites every

month and recorded the content and metadata about that site, including the name and version

number of the server software hosting each website. By tracking the server software being used

to host each organization’s website over time, we can observe when an organization updates its

server software and when it chooses to forgo updating and continue using the aging or vulnerable

software.

 5

Our analysis proceeds along three lines. First, we assess how common security

vulnerabilities are in the server software of organizations using Apache. We find widespread use

of server software with severe security vulnerabilities. Between 2000 and 2018, nearly 60% of

the organizations in our dataset had a publicly disclosed security vulnerability on their server. In

some months, such as October 2004, nearly every Apache webserver hosting the organization

homepages in our sample operated with a publicly disclosed severe security vulnerability. This

finding suggests that opportunities for cyberattacks are alarmingly numerous.

Second, we document the cross-sectional characteristics of organizations that are more

likely to install an Apache server software update following its release using a sequential logit

estimation procedure. We find that 76% of organizations with severe vulnerabilities in our data

do not install readily available server software updates even six months after their release. After

controlling for a variety of characteristics of the organizations, we find that few observables can

account for the variation in organizations’ response to released software updates. Instead,

unobservable and persistent differences in organizations are the primary drivers of different

approaches to updates.

Lastly, we explore the time dimension of our data and document the characteristics of

organizations and attributes of the Apache software updates associated with organizations being

faster or slower to install those updates over time. Using a survival model with time-varying

covariates, we find that organizations with technically complex websites are slower to update

when new versions are released. At the same time, those using cloud-hosting services are

quicker. We also demonstrate that organizations are more deliberate in installing major version

updates and updates filled with new features than minor updates or updates exclusively fixing

security vulnerabilities.

Our work fills both a conceptual and an empirical gap in the cybersecurity literature.

Previous works about cybersecurity and software updates have primarily focused on software

vendors (Arora, Nandkumar, and Telang, 2006; Arora, Telang, and Xu, 2008; August and Tunca,

2011; Mookerjee et al., 2011; Mitra and Ransbotham, 2015). With some exceptions, the models

presented in these papers treat software users as homogenous and portray software users’

decisions regarding when to install updates as deterministic or a function of update quality. And

yet, software vendors and users share responsibility for cybersecurity: vendors provision patches,

but software users decide when to install those patches. Therefore, the behavior of software users

 6

regarding whether and when to install software updates can play an important role in determining

how to optimize the cybersecurity policies considered in the previous literature. Indeed, in their

study on the tradeoffs of mandating faster disclosure of software vulnerabilities, Arora,

Nandkumar, and Telang (2006) acknowledged that releasing a patch could increase the number

of cyberattacks and cited empirically understanding the factors that hasten or slow user-patching

as a promising area for future research.

We contribute conceptually by describing and ultimately empirically estimating a simple

model of companies’ decisions regarding installing server software updates. Similar to the

framework presented by Dey et al. (2015), our model builds on the long-noticed phenomenon

that there is considerable heterogeneity in the regular updating cycle and firms’ approaches to

installing software updates (Arbaugh, Fithen, and McHugh, 2000). Some companies routinely

update their server software, while others have a more ad-hoc approach to updating. In addition,

among companies that wish to eventually adopt software updates, a variety of frictions and costs

can cause delays in installing those updates (Baroudi Bloor, 2003; Dissanayake et al., 2022;

August and Tunca, 2006; August et al., 2014; Kang, 2022).5 Therefore, our paper describes a

two-stage decision for companies: firms choose a routine with regard to updates—which could

be to always update immediately, never update, or update after a waiting period—and those who

choose to install updates, also decide how long to wait until they install a particular update.

Unlike Dey et al. (2015), our model maps closely to a sequential logit setup, allowing us to

empirically estimate which organizational characteristics are associated with different

approaches to updating and which attributes of patches are associated with faster diffusion and

adoption.

We also contribute by filling an empirical gap in the literature. Our analysis is one of the

first to document and analyze the heterogeneity in server software-updating decisions across a

wide range of companies and organizations over a long time period. Previous works recognized

5 Kang (2022) emphasizes user incentives for upgrading enterprise software with many complements and the costs
of accounting for such operational complexity. In a for-profit setting, August et al. 2014 investigate optimal trade-
offs between the cloud-supported provision of upgrades or on-premise upgrades in the face of heterogeneous user
valuation of quality. For-profit firms target their promotions to segments that demand low, medium, or high security,
depending on the risks and costs of alternatives. Relatedly, August and Tunca, 2006 analyze incentives to patch in
both a for-profit and free setting, assuming that upgrade behavior reflects forward-looking incentives but ignores
externalities on others. In the for-profit environment, incentives to fix are too low, requiring vendor subsidies to
induce optimal behavior. With freeware, the incentives are too low (high) when the risks and costs are minor
(significant).

 7

that firms did not immediately install patches after their release. For example, Arbaugh et al.

(2000) found instances of servers being hacked using vulnerabilities patched two years prior. But

that analysis was conditioned on successfully exploiting the vulnerability to detect that a

vulnerability had not been patched. Our data allows us to see how many companies operate with

vulnerabilities, putting them at-risk regardless of whether or not those vulnerabilities are

ultimately exploited. Furthermore, to our knowledge, only two prior empirical research studies

have examined longitudinal investment in cybersecurity and linked it to outcomes. Li et al.

(2021) examined hospital adoption of security software and investment in related activities,

while Liu et al. (2020) examined higher education and governance and associated actions. Both

papers link these security investments to the propensity to suffer a security incident as well as

exogenous organizational features and processes, using cross-sectional variance to infer causal

determinants.6 Our study takes a different approach, leveraging the quasi-random discovery of

vulnerabilities and our longitudinal data to gain causal inference. In addition, our study looks at

an extended nearly 20-year period, organizations across different industries, in addition to the

attributes of the software updates themselves.7

The findings from our work also connect with the vast literature measuring the quantity

and quality of IT and its impact on the productivity of organizations (Jorgensen, 2005; Jorgensen

et al., 2016; Brynjolfsson and Hitt, 2003; Tambe and Hitt, 2012). Researchers have found

persistent differences across organizations in the investments in and returns from IT (Foster et

al., 2001; Aral et al., 2006).8 Our prior work (Murciano-Goroff et al., 2021) made a direct link

with productivity analysis. It showed that high productivity correlates with high-quality web

software, which arises at firms that upgrade more frequently and maintain software close to the

frontier. In contrast, in the present study, we link upgrading behavior to a new valuable outcome,

cybersecurity vulnerabilities, which has yet to be a focus of prior productivity analysis. Similar

to patterns identified in previous research, we find persistent differences across firms in IT

investment behavior, which motivates analyzing the determinants of firm heterogeneity in

6 Li (2021) stresses the returns at organizations that invest in on-premises processes, such as anti-virus, intrusion
detection, and authentication. Liu (2020) found behavior consistent with a tradeoff between granting autonomy and
flexibility in using information systems and enforcing standardized, organization-wide security protocols—the more
complex the computing environment, the higher the returns on centralized governance that limits vulnerabilities.
7 This include the number of new features, bug fixes, severe and non-severe vulnerabilities fixed in each update.
8 Some of this variance can be explained by the differences in returns related to the size and scale of
implementations and strategic investments that enable leadership persistence (McElheran, 2015; Besen and Righi,
2019; Tambe et al., 2020; Zolas et al., 2020).

 8

investment in software quality. Unlike that work, we focus our analysis on user responsiveness to

announcements, the availability of patches, and the causal determinants of the variance in

upgrade activity.

Finally, our results have important implications for companies as well as policymakers.

In the final section of this article, we discuss some of those implications. In particular, given that

the majority of firms are predominantly inattentive to vulnerability disclosures, releasing

software updates with less information about the vulnerabilities inside may be socially efficient.

Furthermore, we argue that more attention should be paid within firms to how technical

complexity can inhibit firms from staying secure. Automating updating, such as services

provided through cloud providers, could help.

2. Setting
In this section, we describe how software vendors receive reports of vulnerabilities and

create software updates to fix those vulnerabilities. We also provide a simple model of how

software users respond to the availability of new software updates, including the decisions of

whether to install software updates and, if installing them, how quickly to adopt these software

updates.

2.1. Reported, Disclosed, and Fixed Vulnerabilities

Our study examines organizations using server software, a particular type of computer

program that enables users to host a website. When an individual visits an organization’s

website, the individual’s computer sends a request to that organization’s server. The server

processes the request using server software that determines which content to send back to the

individual. For example, after an individual connects to Amazon.com, the Amazon server

software determines which products and prices to display to that individual. Similarly, after an

individual connects to their bank’s website, the server software determines who the individual is,

what information they should or should not have access to from the bank’s database, and what

transactions that user should be allowed or not allowed to make.

Because server software plays these critical roles in guarding and transmitting sensitive

data, server software vendors have developed procedures for finding and fixing security

vulnerabilities. Software vendors typically accept reports from users about bugs and potential

 9

security vulnerabilities. Teams of security experts vet these submissions, known as reported

vulnerabilities. Many software vendors also submit these bugs to the National Institute of

Standards and Technology (NIST) to be scored based on the potential of that vulnerability to

harm users.9 The bugs that score “high” for their impact on the security of software and for their

exploitability we call severe security bugs. These bugs harm an organization’s system's quality

and security for two reasons. First, these bugs are easily exploitable. According to the scoring

system, most severe security bugs do not require local access to the system to perform the attack;

attackers can perform the attack over the network and often need no or little authentication for

accessing and exploiting the vulnerability. Moreover, once exploited, these bugs can result in

significant losses. These include and are not limited to a partial or total disclosure of user

information, a modification of some or all of the system’s files, reduced performance, or a

complete system shutdown (Mell et al., 2007).

After evaluating a reported vulnerability, software vendors decide when to disclose that

vulnerability to the public. Vendors often initially keep reported vulnerabilities secret from the

public, so malicious actors are not tipped off about their existence. When software vendors

believe it is prudent to do so, they publicly acknowledge the vulnerability. We refer to these as

disclosed vulnerabilities. Vendors disclose these vulnerabilities when it is essential to warn their

users about security risks to encourage them to monitor their systems more carefully or to take

mitigating actions, such as updating their software. Finally, software vendors develop, and

release updates that fix the vulnerabilities, and software users decide whether and when to install

it.10 At that point, the vulnerabilities are called fixed vulnerabilities.11 To decrease the probability

that malicious actors exploit a bug, software vendors often release software updates and disclose

vulnerabilities simultaneously.

9 The National Institute of Standards and Technology (NIST) maintains the National Vulnerabilities Database
(NVD). When a bug is reported, it is entered in the NVD, and a score is computed based on the Common
Vulnerability Scoring System (CVSS). https://nvd.nist.gov/vuln-metrics/cvss#
10 While this is the process that most software vendors hope will occur, some bugs are discovered and handled
outside this procedure. In particular, some bugs are discovered when a user notices and discusses problems with the
program without knowing the situation, indicating an underlying vulnerability. In those cases, the date the bug is
discovered and the date the vendor publicly acknowledges the vulnerability may be the same. In addition, the vendor
may acknowledge the bug before a software update is ready to be released. In addition, proprietary server software,
such as the Microsoft IIS server software, automatically “pushes” updates to some users.
11 The statement of this process is available on the website of the Apache Software Foundation Security Team at
https://www.apache.org/security/. To the best of our knowledge, the overview of this process has stayed the same
since the early days of the Apache Software Foundation.

 10

We focus our analysis on the web server software, Apache, and the organization that

supports it, the Apache Foundation, who follows the above outlined process for handling reports

of bugs and security vulnerabilities. The Apache software descended from the first web server,

built on the new diffusing World Wide Web, released by Tim Berners-Lee in 1991. In 1993, the

National Center for Supercomputing Applications (NCSA) at the University of Illinois

developed a computer program called the NCSA HTTPd server. The HTTPd server software

supported sharing content on the web through the Hypertext Transfer Protocol (HTTP). NCSA

made HTTPd available as shareware within academic and research settings, along with the

underlying code. HTTPd’s adoption spread quickly, partly because the servers did not restrict the

usage or modification of the software. Many web administrators took advantage by adding

improvements as needed or communicating with the lead programmer, Robert McCool, who

coordinated adding and releasing extensions. When, in the spring of 1994, McCool left the

University to become one of the first ten employees of the newly founded Netscape, the

development of the web server software fragmented with eight different teams working on eight

distinct vintages of the software. In 1995, the eight teams decided to coordinate their efforts into

one server known as Apache (ostensibly because it was “a patchy web server”). The University

of Illinois then transferred the server software development to the Apache organization without

licensing or restrictions. Apache subsequently grew in popularity as the commercial internet

grew, becoming widely used. Today, the Apache Foundation coordinates the development of the

Apache server software, receives reports of vulnerabilities, and orchestrates the disclosure of

vulnerabilities and the release of software updates to mitigate those vulnerabilities.

2.2. Server Software Users’ Response to Software Updates

In this section, we sketch a simple model of organizations’ response to the release of

software updates fixing security vulnerabilities in server software.

When a software update becomes available for the server software that an organization

uses to host their website, the organization chooses whether or not to install that update.12

Drawing on prior research, we posit that each organization chooses a baseline regarding security

12 Organizations employ technical staff to maintain IT infrastructure, including the server software for hosting the
organizations’ websites. IT decisions are typically made by individual server administrators within organizational
contexts. Decisions about installing, updating, and changing server software are an interplay of individual and
organizational-level factors. This paper discusses server administrators and organizations interchangeably as
decision-makers regarding server software.

 11

and software updating practices (Dey et al., 2015; Dissanayake et al., 2022). For some firms, this

baseline may be to keep their software at the technological and security frontier by immediately

installing updates and security patches as they become available. These firms we dub the

Frontier Chasers (FC). Other firms choose a baseline rate of update that largely ignores

available software updates. We call these firms the Do-Nothing (DN) firms. Once firms opt into

either an FC or DN updating routine, their behavior when software updates become available is

deterministic.

Firms that opt not to install updates immediately after their release and yet do intend to

install the updates eventually, we call Do-Something (DS) organizations. These organizations

must decide how long to wait following the release of a software update until their organization

installs the update.

Which routine an organization chooses—FC, DN, or DS—may be a function of many

complex factors, including organizational capital, management practices, and cybersecurity

human capital. Furthermore, the organization’s geographic location may influence local labor

market conditions and the costs of hiring labor to operate a process.

Costs and benefits influence both the baseline updating routine of an organization and the

responsiveness of an organization to the release of software updates.13

The costs affiliated with installing software updates may derive from the frictions that the

organizations encounter when updating. For example, if administrators must multitask across a

large set of operational needs, then updating the Apache server may involve time and high

opportunity costs (Dissanayake, et al, 2022). If an organization has been operating for longer,

administrators may inherit configurations that accumulate myopic decisions from the past. If,

however, a server is hosted on a cloud provider, such as Amazon Web Services (AWS),

administrators may find it less costly to manage the transition from one software version to

another. In addition, the technical complexity of an organization’s IT operations is likely to be

associated with organizations being less responsive to changes in known vulnerabilities in

software. Websites and other IT infrastructures that depend on large numbers of interconnected

13 This conceptualization parallels the rational inattention framework applied to organizations (Matějka and McKay,
2015). Much like that literature, organizations have a baseline propensity towards an action, updating. In addition,
each organization has factors that influence their attentiveness to new information, namely responsiveness to the
presence of bugs in their software and the release of new software versions.

 12

or interdependent technologies are more challenging to update.14 They require more forethought

and planning to avoid introducing incompatibilities when transitioning software versions.

Because of that friction, more technically complex IT infrastructures are less likely to respond

quickly to discover vulnerabilities.15

As for the benefits from installing software updates, these may include direct benefits,

such as faster loading times for their site or the ability to display and deploy frontier web apps

that engage users. For example, deploying servers to support Web 2.0 applications may motivate

upgrades. These updates may also decrease the probability of security breaches. The prominence

of an organization’s homepage is also likely to increase the benefits of being responsive to the

discovery of cybersecurity vulnerabilities. Highly trafficked websites are also more likely to be

targeted by hackers. Finally, the ability of a website to conduct e-commerce and financial

transactions also correlates with the benefits of updating after the announcement of cybersecurity

vulnerabilities in software. Cybercriminals are likely to target sites that collect and store financial

records. So, server administrators at organizations with such sensitive data are also more likely to

watch carefully for updates patching security vulnerabilities.

Figure 1 summarizes our basic model of the sequential decisions of firms following the

release of a server software update.

3. Data and Sample Construction
3.1. Key samples and data sources

We combine two data sources to construct our first key sample, a broad panel that tracks

Apache server software used by medium to large organizations in the United States between

2000 and 2018. This sample is suitable for a census of usage and vulnerabilities in the user base

over time.

14 If updates have the potential to disrupt organizations’ servers, then organizations with lower probabilities of being
targeted by cyberattacks may feel inclined to delay installing updates until other organizations have attempted to do
so. In this way, organizations may be free-riding on other organizations being first-movers and figuring out how to
mitigate any negative impacts from installing updates (Hui-Wen and Png, 1994).
15 Rather than attempting to install all available updates and patches, organizations may attempt to prioritize
vulnerabilities with higher exploitability. Previous research has provided models of what such a prioritization
strategy could be (Jacobs et al, 2020). In Appendix A4, we examine if our results appear different when focusing
exclusively on highly exploitable vulnerabilities.

 13

To construct this sample, we first collected information on all organizations in the Bureau

van Dijk Mint Global database with at least 50 employees located in the United States, and

listing a website. For each organization in this database, the data provides information about the

estimated number of employees, the industry of the organization, and the geographic region in

which the organization operates.16

We then found and extracted information on the web server software used by each of the

organizations in our Mint Global data in each month between 2000 and 2018 from the Internet

Archive (IA) Wayback Machine. The IA is a non-profit organization that has routinely scanned

millions of publicly facing websites for the past two decades and taken snapshots of the content

on those sites. When connecting to a website, the server software that hosts the site will respond

with both the content of the site as well as metadata about the server and software hosting the

website. This metadata often contains the vendor of the server software hosting a site and the

server software version number (e.g., Apache 1.3.6).17 The responding server also communicates

its IP address, which is a sequence of numbers that indicates where the server hosting a website

was located. The IA collected and stored the metadata and IP addresses for every website they

scanned, and every time they scanned each site. Using the list of organizations and their web

addresses from Mint Global, we found the associated sites in the IA data, extracted the metadata

from each time the IA connected with that site, and parsed the metadata for the server software

and version numbers. In addition, we also examined the IP addresses of each website, as

recorded in the IA data. Using a list of all IP addresses associated with Amazon Web Services

(AWS), Microsoft Azure, and Google Cloud Platform, we flag if the servers hosting an

organization’s website were located on the cloud at a given time.

We combine these two sources of raw data into a broad, monthly panel dataset of Apache

web server users by keeping observations of organization-months that used Apache web server

software. In total, this panel contains close to 5 million organization-month observations of

16 An organization in our dataset is mapped to a website domain. If two organizations have the same website
domain, they are treated as part of the same organization.
17 Users have a choice regarding how much information their server response headers show about their web servers,
ranging from showing the full information including the vendor, version, and operating system to showing no
information at all. Setting anything less than showing the server vendor and version is not recommended. As the
Apache Foundation puts it, “…[Obscuring server header] makes it more difficult to debug interoperational
problems. Also note that disabling the Server header does nothing at all to make your server more secure. The idea
of ‘security through obscurity’ is a myth and leads to a false sense of safety.” See:
https://httpd.apache.org/docs/2.4/mod/core.html#servertokens.

 14

Apache server usage from 150,854 organizations between 2000 and 2018. This panel

corresponds to the data item shown in Table 1 Row (i)(a).

To enable our analysis of user decisions, we need to be able to precisely determine the

time of update, we therefore construct a restricted panel of Apache users that were frequently

captured by the IA from our broad panel. This restricted panel will allow us to determine when

an organization installed a new version based on when the server version number changes

between adjacent observations. For this panel, we keep the subset of organizations from the

broad panel that had their website scanned by the IA at least every three months on average. The

IA was not able to scan every website every single month. By focusing on organizations that

have their website scanned regularly, we can reasonably precisely observe the time when an

organization installs a software update. We include only organizations with at least ten months of

observed Apache usage. As Apache makes a new minor release every 4.5 months on average, the

restriction ensures that we observe organizations’ updating decisions over at least two average

software release cycles. We also drop an observation if the specific scan of the website by the IA

and the following scan for that website are more than 4.5 months apart. Finally, we do not

include the first observed Apache updating cycle and the last observation of Apache usage of an

organization to adjust for censoring observations of a website. After these restrictions, our

restricted panel of Apache users with frequent captures contains around three million

organization-month observations from 70,092 U.S. organizations between 2000 and 2018. This

panel corresponds to the data item in Table 1 Row (i)(b).

Given that we can precisely detect the time software update happens in our restricted

panel, we can construct several different outcome variables for this dataset. The first one is the

variable 𝑢𝑝𝑑𝑎𝑡𝑒𝑑!", which is a binary that equals 1 if organization 𝑖 makes an update in month 𝑡.

An update happens in month 𝑡 either when the organization uses a higher major version in the

next observed month18 or when the organization uses a higher minor version in the next observed

month.19 Another outcome variable is a “time-to-event” variable 𝑡𝑖𝑚𝑒𝑇𝑜𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑜𝑛𝑡ℎ𝐸𝑛𝑑!",

which captures the number of months since organization 𝑖’s previous update of Apache server

software.

18 E.g. the organization uses Apache 2.2 then changes to Apache 2.4.
19 E.g. the organization uses Apache 2.2.10 then changes to Apache.2.2.11.

 15

Moreover, we can construct variables that capture an organization’s historical updating

behavior. We construct 𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! and 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟!, which are binary

variables that capture how frequently an organization 𝑖 updated its Apache server software in its

first nine observed months. If it did not update at all, the variable 𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! is equal

to 1. If it updated twice or more, the variable 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! is equal to 1.20

For each observation in our broad and restricted panels, we match the Apache server

software version an organization’s website is using with information about that software version

from the Apache Software Foundation and the National Vulnerability Database (NVD). The

Apache Foundation and the NVD contain detailed information about each version of Apache

software and every vulnerability in each version. This includes the degree and severity of

security vulnerabilities, the date vulnerabilities were reported to the Apache Foundation, the date

those vulnerabilities were disclosed to the public, and the date of the release of new versions that

fix each vulnerability. For each organization-month observation in our panel, we check if the

server software version contained a reported, disclosed, or fixed severe security vulnerability at

that time. We also checked if a newer server software version had been released and if that

version was considered a major or a minor update. Finally, we also parse the Apache software

“changelogs,” which are documents summarizing the changes made in a software version update

for the number of severe and non-severe security vulnerabilities fixed and the number of new

and improved features added to the software. The information we obtained from the Apache

Foundation and the NVD correspond to data items (ii)—(v) in Table 1.

Merging information from the Apache Foundation and the NVD to our panels allows us

to construct a range of variables that describe the vulnerability and quality status of an

organization’s server software in a month. ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" captures whether the version of the

software in use had publicly disclosed severe security vulnerabilities.

𝑤𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑒𝑀𝑜𝑛𝑡ℎ𝑠𝑆𝑖𝑛𝑐𝑒𝐴𝑑𝑑𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔!" is a binary which is equal to 1 if the version in use

had additional severe security vulnerabilities disclosed within three months before month 𝑡.

𝑛𝑒𝑤𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" captures whether newer versions of Apache server software, major or

minor, to what organization 𝑖 was using in month 𝑡, were available.

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" captures whether newer minor versions of Apache server

20 The two variables are undefined for the first nine observations of Apache usage of each organization because
those observations are used to construct the variables.

 16

software were available. 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!" captures the number of severe security

vulnerabilities the oldest newer minor version (if one was available) fixed. If no newer minor

version was available for organization 𝑖 in month 𝑡, this variable is set to zero. Similarly,

𝑛𝑜𝑛𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!" captures the number of nonsevere bugs the oldest newer minor version

fixed, and 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠!" captures the number of feature changes the oldest newer minor

version has, if such a version was available.

Building on our restricted panel, we also create a cross-sectional dataset that we call the

release window cross section. This dataset tracks the decisions of organizations during six-month

windows following the releases of Apache software updates that fixed severe security

vulnerabilities. An observation in this dataset is an organization during one of these six-month

windows. The Apache version in use at this organization at the beginning of the six-month

window must have severe security vulnerabilities that the new release fixed. The dataset contains

161,106 observations for 55,558 organizations during 15 unique six-month release windows.21

The outcome of interest from this dataset is whether the organization, faced with the release of

an update that fixed severe vulnerabilities in its used version, chose to chase the frontier, do

something, or do nothing.22 This cross-sectional dataset corresponds to the data item in Table 1

Row (vi).

3.2. Additional Covariates

We augment our key datasets with additional variables from various other data sources.

To gauge the amount of traffic an organization’s website received, we obtained website

traffic rankings from Alexa for the top one million websites each year between 2010 and 2018.

We match the organizations in our sample with the Harte Hanks database to capture the

scale and complexity of an organization’s IT operations. This database contains information such

as the number of personal computers owned by the organization, the number of IT staff, the IT

budget, and the software budget in 2017. We also manage to obtain, for a fraction of the

21 We only include releases that fixed severe security vulnerabilities and that were at least six months apart from the
next such releases to enable us to observe organizations’ decisions with respect to the given releases over a
reasonably long duration.
22 We define the frontier chasers to be organizations who updated within two months following the release, do-
something organizations to be those who updated within six months, and do-nothing organizations to be those who
did not update within six months.

 17

organizations, whether they have outsourced their IT operations sometime between 2005 and

2009.

For a subset of organization websites in our data, we also have data on the technologies

used in these organizations’ websites between 2016 and 2018. We collected this data from the

HTTP Archive, an organization that takes snapshots of websites and analyzes them for their

technical attributes. Specifically, the HTTP Archive runs an open-source tool developed by the

company Wappalyzer on each website, which flags the technologies being used. The data

capture both technology categories that contribute to the basic architecture of websites, such as

web frameworks and databases, and technology categories that support monetization and e-

commerce, such as marketing automation and payment processors. This data helps us construct

proxies for websites’ technical complexity and the organizations’ intent to monetize their

websites. We conceptualize the number of web technologies as being correlated with the

technical complexity of the website and, thus, the technical complexity when attempting to

update the site’s web server. We think monetization tools indicate that security vulnerabilities

would be particularly damaging and that significant benefits exist to keep the website secure.

This data is available for 24,263 organizations in our dataset.

To study whether disclosures of data breaches by organizations in the same geography or

the same industry prompt organizations to improve and secure their own software, we also obtain

data on breach disclosures from Privacy Rights Clearinghouse’s Data Breach Chronology, the

best publicly available data source for breaches to our knowledge. Data Breach Chronology

compiles breach disclosures from various sources, including the media, state attorney generals’

offices, and other online trackers for breach disclosures. This data contains 2,366 disclosed data

breaches between 2005 and 2018 in all fifty US states and Washington D.C. Each disclosure

includes the reporting organization, the date of disclosure, and the state and broad industry

category of the organization’s operations. For 1,490 (63%) of these, the organizations also

reported the number of affected personal records.

Because our information about organizations from Mint Global contains data from only

one year, 2018, we also repeat some of our analysis for publicly traded firms. Publicly traded

companies make available data on an annual basis about their operations. Therefore, we focus on

publicly traded firms for some of our analysis. Our data for those firms come from Compustat

and covers the full panel of U.S. public firms every year. This data contains a wide range of

 18

organization characteristics such as the total assets, capital expenditure, cash flow, and income,

allowing us to examine organization characteristics that might affect updating decisions deeply.

The data’s time dimension also enables us to study the effects of changes in financials within

organizations. A drawback to using this data source is a significant sample size reduction, given

that only a tiny fraction of organizations in our sample are public firms.

Table 1 enumerates and summarizes all the data sources used in our analysis. Table 2

shows summary statistics for the restricted panel of web server usage in Table 1 Row (i)(b)

merged to the various organization and website characteristics. Appendix Table A1 shows

detailed variable definitions. Appendix Table A2 displays the correlation of various measures

used in our analysis.

4. Empirical Framework
The first component of our empirical analysis is descriptive, where we document the

extent and distribution of security vulnerabilities in the Apache server software being used by

organizations over time. To perform this analysis, we use our broad panel data with almost five

million observations from 150,854 organizations, described in Row (i)(a) of Table 1. We

examine the proportion of organizations using Apache server software with severe security

vulnerabilities and illustrate changes over time and heterogeneity across the industry, geography,

and firm size. We show these results in Sections 5.1—5.3.

4.1. Sequential logit analysis for cross-sectional determinants of user decisions

Based on the empirical evidence we find from the above exercise, we then investigate the

characteristics of organizations associated with better responsiveness to vulnerability disclosure

and software improvement. We focus on examining which organizations updated quickly (FC),

slowly (DS), versus did not update at all (DN) during the six-month windows following new

releases that fixed severe security vulnerabilities.

Using the Release Window cross-sectional dataset, we estimate an empirical model that

mirrors the model presented in Figure 1. Specifically, we estimate a sequential logit model with

two stages of choice: In the first stage, an organization decides whether to update to the new

version that fixes its severe security vulnerabilities immediately within two months (FC) versus

to delay (DS or DN). If the organization decides to update immediately, its decision outcome is

 19

FC. If the organization chooses to delay, it enters the second stage, where it decides whether to

do something within the extended observation window of six months (DS) versus to do nothing

(DN).

The sequential logit regression models each stage of choice separately using a standard

logit decision model for the subsample of organizations that are “at risk” of making the

decisions. For the first stage of the decision, with FC as the base outcome, the probability of

updating immediately and choosing FC is specified as follows:

𝑃!#(𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔𝐹𝐶) =
$

%$&'()	+,!"&,!!-!,$%&⋯&,!&-&,$%/0
 (1)

where 𝑖 denotes the organization and 𝑤 denotes the release window for the observation. 𝑋1,!#

includes characteristics of the organization.23

If an organization chooses not to respond immediately, it enters the second stage. With

DS as the base outcome, the probability of choosing DS conditioning on entering the second

stage is the following:

𝑃!#(𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔𝐷𝑆|𝑛𝑜𝑡𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔𝐹𝐶) =
$

%$&'()	+,'"&,'!-!,$%&⋯&,'&-&,$%/0
 (2)

And the probability of choosing DN conditioning upon entering the second stage is the
following:

𝑃!#(𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔𝐷𝑁|𝑛𝑜𝑡𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔𝐹𝐶) =
'()	+,'"&,'!-!,$%&⋯&,'&-&,$%/

($&'()	+,'"&,'!-!,$%&⋯&,'&-&,$%/
	 (3)

By examining the coefficients on the components of 𝑋1,!#, we can understand which

organizational characteristics are associated with the organization having an FC, DS, or DN

approach. We show these results in Section 5.4.

4.2. Survival analysis for within-organization, time-varying determinants of user
decisions

The sequential logit model is helpful for shedding light on the determinants of user

decisions in response to releases at the cross section. However, the model does not permit one to

23 If some characteristics of an organization change within the six-month release window 𝑤, we use in the
regressions the values at the beginning month of the release window.

 20

vary an organization’s characteristics within each release window and only uses cross-sectional

variations and data. As a result, if there are organizational characteristics or other covariates that

vary within organization over time that influence how soon an organization updates, the model

does not capture these effects. Our last piece of empirical analysis, therefore, utilizes the time

dimension of our restricted panel to shed light on the time-varying organizational characteristics

and attributes of software update releases that instigate or impede the rate that organizations

install those updates.

Because the outcome of interest in this analysis is a time-to-event variable—the amount

of time since the organization’s previous update to the organization’s next update, we estimate

survival models with time-varying covariates to study what predicts updating faster or slower.

The standard Cox proportional hazards regression model with time-varying covariates is as

follows:

ℎ(𝑡) = ℎ4(𝑡)𝑒𝑥𝑝	J𝑏$𝑋$" + 𝑏5𝑋5" +⋯+ 𝑏1𝑋1"M	 (4)

where ℎ(𝑡) is the hazard function, representing the expected monthly updates given that the

version has continued usage for 𝑡 months. ℎ4(𝑡) is the baseline hazard and represents the hazard

when all the independent variables 𝑋$" , … , 𝑋1" are equal to zero.24

While the above model allows us to explain differences in the rates that organizations

update their server software using the observed time-varying organization and environmental

attributes, there is the possibility of remaining unobserved organizational routines around

updating. This raises a methodological concern. Specifically, the model in Equation (4) assumes

that the baseline hazard ℎ4(𝑡) is identical across organizations. However, as we will show later

in the Results section, we have discovered considerable heterogeneity across the organization in

updating decisions that observable covariates cannot explain in our cross-sectional regressions.

Not accounting for the unobserved differences in the organizations’ baseline hazard, or

24 Implementation-wise, the Cox model with time-varying covariates requires two distinct variables to keep track of
the time-to-update. For example, suppose a software updating cycle consists of three months and there are covariates
that vary at the monthly frequency, then this updating cycle would make three separate monthly observations. The
first observation has a starting time-to-update at month 0 and an ending time-to-update at month 1. It is tied to the
combination of covariate values in the first month. The second observation has a starting time-to-update at month 1
and an ending time-to-update at month 2. It is tied to the combination of covariate values in the second month. The
third observation has a starting time-to-update at month 2 ending time-to-update at month 3. It is tied to the
combination of covariate values in the third month. The event equals 1 (“updated”) only for the third observation.

 21

propensity in updating would give rise to a reverse causality issue. For example, organizations

that lag in updating their Apache server software are more likely to use older versions that

accumulate more severe security vulnerabilities over time. If we assumed that all organizations

have the same baseline hazard and estimated a Cox model, the estimated coefficient on

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" would be biased downward, meaning that we are more likely to find a

negative effect of severe security vulnerabilities on the organizations’ decisions to update.

Therefore, to control for unobservable differences in different organizations’ baseline

hazards, our preferred specification is a stratified Cox model:

ℎ!(𝑡) = ℎ4!(𝑡)𝑒𝑥𝑝	J𝑏$𝑋$" + 𝑏5𝑋5" +⋯+ 𝑏1𝑋1"M (5)

where the 𝑖 subscript on the hazard functions denotes stratum organization 𝑖. Appendix A3

discusses additional justifications for stratifying at the organizational level. Under this model, the

effect of a time-varying variable is identified by the changes to that variable within an

organization. To identify the heterogeneity in the effect of the time-varying variable across

organizations, one can easily do that by interacting the time-varying variable with organization

characteristics. Since the stratified Cox model absorbs the unobserved differences in the baseline

updating rate across organizations, the interaction terms isolate the observed factors associated

with differences in organizations’ speed of updating.

In our analysis, we include a variety of covariates in 𝑿𝒊𝒕. One primary time-varying

variable of interest, ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" captures whether the version of the software in use had

publicly disclosed severe security vulnerabilities. Additional time-varying variables of interest

are 𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" and 𝑛𝑒𝑤𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" . Including the two variables

serves two purposes. First, we want to investigate how much organizations responded to

vulnerabilities versus releases of new versions. Second, if no new versions are available for

organizations to update when severe vulnerabilities are disclosed, organizations’ inaction is not

due to a response failure. If we do not control for the availability of new versions, major or

minor, we will underestimate the effect of disclosures of vulnerabilities on organizations’

updating decisions.

We think of the discovery, reporting, and disclosures of severe security vulnerabilities

and the releases of new versions to be plausibly exogenous timing to individual organizations’ IT

staff. Though testing exogeneity assumptions formally is generally difficult, our assumption in

 22

this setting is intuitive. The vast majority of web developers and IT professionals are not directly

involved in developing the Apache server software and its vulnerability disclosure decisions.

However, they can potentially influence the process through bug discovery and reporting. IT

professionals discover bugs in the software when they interact with it; for example, when they

use the software to build applications or develop new features of the software itself—the chances

of finding bugs increase when the total interaction with the software increases. However, as

many individuals and organizations around the work worldwide on the Apache web server,

changes in the activities of any particular organization (other than the Apache Foundation) are

tiny compared to the total amount of interaction. To confirm that individual organizations’

actions do not have an outsized impact on Apache server software's bug handling and release

process, we inspect our data on who was credited with discovering or reporting each

vulnerability to the Apache Software Foundation. Other than the staff at the Apache Software

Foundation Security Team, we find almost no overlap in the names and organizational

affiliations of the reporters.

To understand what factors are associated with organizations being more or less

responsive to the disclosure of security vulnerabilities and the availability of new software

versions during their IT operation cycles, we include interactions between the above time-

varying variables and organization and environmental attributes in some specifications of our

empirical analysis.

We show results from our survival analysis in Section 5.5.

5. Results
5.1. Prevalence of Security Vulnerabilities

In our broad panel, we begin by documenting the extent and distribution of security

vulnerabilities in the Apache server software being used by organizations between 2001 and

2018. We focus on organizations operating with vulnerabilities under three different scenarios:

1) severe security vulnerabilities that have been reported to Apache, 2) severe security

vulnerabilities that are publicly disclosed, and 3) severe security vulnerabilities that Apache had

previously released a patch fixing.

 23

Figure 2(a) shows the fraction of organizations using Apache versions with reported

severe security vulnerabilities. Organizations with these vulnerabilities would be susceptible to

potential attacks. The figure shows that a considerable fraction of organizations’ servers operated

with these vulnerabilities throughout our sample. Over the course of the almost 20 years in our

sample, the fraction of firms operating with these vulnerabilities was smallest in November 2015

at around 30%. The fraction is the highest, at almost 100%, in December 2015 when a critical

security vulnerability in a module that assigns content metadata to the content selected for an

HTTP response was discovered.

Figure 2(b) shows the fraction of organizations using Apache versions with publicly

disclosed severe security vulnerabilities. Malicious parties could easily utilize information about

disclosed vulnerabilities to find and target organizations using server software with these

vulnerabilities. The fraction of organizations using Apache versions with publicly disclosed

severe security vulnerabilities was above 19% in all months we observed. The fraction peaked in

October 2004 at 98% when several severe security vulnerabilities affecting Apache 2.0.x became

public in the latter half of 2004.

One might wonder if security vulnerabilities are primarily found on the websites of

incumbent firms while new entrants avoid operating with vulnerabilities by selecting newer and

more secure server software. Figures 2(a) and 2(b) display the percentage of firms with reported

and disclosed security vulnerabilities separately for incumbent and new organizations. Both

figures show that new organizations were better at adopting more up-to-date, secure software

versions by a small margin. Unlike incumbent firms, new entrants are unburdened by technical

investments of the past. Therefore, entrants may be able to install updates and new versions of

software more easily and maybe more discerning and aware of recent releases of software

versions.

Figure 3 shows the fraction of organizations using Apache versions with one or more

severe security vulnerabilities that were publicly disclosed and already fixed in newer versions of

the Apache server software. Alarmingly, except for the early period until March 2002, more than

19% of organizations in all months of our sample used Apache versions with severe security

vulnerabilities already fixed in newer versions. In addition, this plot documents that a significant

fraction of organizations operate server software with multiple severe security vulnerabilities,

providing malicious actors numerous avenues for attacking these organizations’ websites.

 24

Given the prevalence of using vulnerable server software, these figures alarmingly

demonstrate that hackers would have no trouble finding servers to exploit.

5.2. Responding to Updates

Closer scrutiny of Figure 3 allows us to discern organizations’ responses to releases of

new versions that fixed severe security vulnerabilities. Figure 3 plots the release dates of the

fixes, represented by the vertical grey lines. This allows us to gauge both organizations’

propensity to install updates and the speed of response to those fixes. Organizations’ response to

these releases is slow and unthorough. A significant fraction of organizations did not respond to

releases. For example, in July 2006, the Apache Foundation released Apache 1.3.37, Apache

2.0.59, and Apache 2.2.3, which fixed a vulnerability that allows remote attackers to cause a

denial of service (application crash) and possibly execute arbitrary code. Many organizations,

however, took months or even years before updating to those releases. The fraction of

organizations using problematic versions of Apache peaked at 92% after the release, but the rate

declined by only 1.6% per month for the next three years. By mid-2009, over 30% of

organizations continued operating vulnerable versions of the Apache server software.

The red oval in Figure 3 shows the six-month window following the July 2006 release.

Among the users impacted by the specific vulnerability and the release (70% of the user base),

16% acted as FC organizations and installed the available software update within two months. In

addition, 12% of firms acted as DS organizations and updated within six months. The remaining

72% of DN organizations chose not to install the update even six months later.25

Repeating the above exercise, we can identify the FC, DS, and DN organizations in

different six-month release windows in our data. Each release window corresponds to a release

that fixed severe security vulnerabilities, and that was at least six months from the next such

release. Overall, we have 161,106 observations of organization-release windows, which

constitutes our release window cross-sectional dataset. We find from this dataset that for 12% of

the observations, the organizations can be categorized as FC, 12% as DS, and 76% as DN.

25 Note that we do not include in the above computation the 30% of the user base that either used Apache versions
free from any public severe vulnerabilities or used versions not impacted by that specific vulnerability.

 25

5.3. Heterogeneity in Responding to Updates

To what extent is the lack of response to released software updates fixing severe security

vulnerabilities similar across organizations or isolated to particular subsets of organizations, such

as incumbent firms, firms in specific industries, or firms in particular geographies?

Figure 4 explores the heterogeneity in these patterns across organizations and websites

with different characteristics. In Figure 4 Panel (a), we split our sample into new and existing

sites. If new users were more discerning when actively selecting a software product, they might

select newer versions that fixed well-known severe vulnerabilities and avoid versions with those

vulnerabilities. Indeed, in the plot, we show that a lower fraction of new websites installed

problematic interpretations of the server software relative to existing sites.

Panel (b) examines the differences based on the organization’s size. For example, smaller

organizations might be more agile and able to update their server software faster due to a small

coordination cost across their IT-related departments. Indeed, the plot shows that larger

organizations more frequently maintained vulnerable software even when fixes were available,

whereas smaller organizations were more inclined to switch to newer versions with fixes.

Panel (c) breaks down the organizations by the geographic region of the organization’s

headquarters. If different geographic regions have different levels of attentiveness regarding

security issues in software—for example, if Silicon Valley-based firms more frequently hear

about security bugs through informal networks—we might expect geographic variation in using

vulnerable versus secure software. Furthermore, if the local labor market for security and

engineering professions differs across regions, this could influence software updating decisions.

In the plot, however, we find a relatively slight variation in software usage with and without

severe security vulnerabilities across geography.

Panel (d) displays the variation across industries. We find some substantive differences in

the software updating decisions. For example, organizations in the Health and Food &

Accommodation industries less frequently maintain server software with severe vulnerabilities

than those in the Finance and the broadly defined Information industries when fixes are

available.

 26

Figure 4 shows some heterogeneity. However, the main finding from these plots is that

compromised Apache servers are prevalent across organizations at different stages of

development, large and small, in all states and industries.

5.4. Explaining the Response to Updates

What explains why some firms respond to the release of updates by installing them and

others largely ignore these updates? In this section, we investigate the cross-sectional

determinants of user decisions regarding whether an organization is an FC, DS, or DN using

estimates from the sequential logit regression model described in Equations (1)-(3) fitted to our

release window dataset.

Table 3 reports the results of that estimation. In the first specification, we fit the model

using our 161,106 observations of user decisions to explanatory variables that are relatively well

populated. After matching the various data sources, we end up with 108,385 observations. In the

second specification, we add variables that shed light on potentially significant margins of the

decision process but are much less well populated. These variables include whether the

organization has outsourced IT its operations, metrics for the technical complexity of its website,

and whether the organization has monetized its website. This sample has 26,540 observations.

Despite the very different sample sizes, the main patterns that emerge from the two regressions

are very similar.

Historical updating behavior is a large and significant predictor of user decisions in

response to releases of fixes to severe vulnerabilities. We include both the 𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟!

and the 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! variables in the sequential logit regressions. Therefore, the dropped

category for historical updating behavior is those who updated once during the first nine months

of observations.

The sequential logit coefficients for our larger sample in the first stage of decision, shown

in Column (1), suggest that an organization that has historically been an infrequent updater has a

𝑒𝑥𝑝(0.167) =1.18 times the odds of the dropped category of delaying and becoming DN or DS

holding other variables constant. In contrast, an organization that has historically been a frequent

updater has a 𝑒𝑥𝑝(−0.239) =0.787 times the odds of the dropped category of delaying and

becoming DN or DS. If an organization has moved to the second stage, shown in Column (2), the

organization that has historically been an infrequent updater has a 𝑒𝑥𝑝(0.192) =1.21 times the

 27

odds of the dropped category of doing nothing. In contrast, a historically frequent updater has an

𝑒𝑥𝑝(−0.0987) =0.91 times the odds of the dropped category of doing nothing. The results from

the smaller sample are qualitatively similar.

We also find that whether an organization operates its server software from the cloud is a

large and significant predictor of responding to the releases, particularly in the second stage. As

shown in Columns (2) and (4), an organization on the cloud has at most an 𝑒𝑥𝑝(−0.505) =0.60

times the odds an organization not on the cloud of doing nothing.

Moreover, data breaches that happened right before the release event window in the same

broad industry category are correlated with a need for more response. This result may reflect that

industries that persistently do a poor job of updating and keeping their software secure suffer

from more cyberattacks. Shown in Columns (2) and (4), a 1% increase in the number of personal

records affected in data breaches disclosed from the same broad industry category is associated

with at least an 𝑒𝑥𝑝(0.01 ∗ 0.0207) =0.02% increase in the odds of doing nothing. The effect is

statistically significant, though economically small.

We find most of the other variables insignificant in predicting user responses. Notably,

we find an organization’s location, revenue, and whether it is public matters little. General

measures of an organization’s IT operations, such as the number of PCs and IT staff, also do not

seem to matter for the cross-section. Even the technical complexity of the website and that the

website was used for monetization did not generate fewer or more responses. Moreover, the

constant term at both stages is the most significant predictor of user decisions. This indicates that

unobserved characteristics primarily drive organizational decisions.

Our evidence so far points to organization-specific characteristics in the detail of its IT

operations to result in persistent differences in responses. Some of those characteristics are

observed, such as using cloud services like AWS. The remaining variation is mainly due to

unobserved differences.

5.5. Speed of Response to Available Updates

Organizations forgo immediately installing updates must decide when they will install

available updates in the future. This decision of how long to wait to install updates may be

influenced by the characteristics of the organization as well as attributes of the software updates

themselves. Many of those characteristics could be time-varying, whose effects our sequential

 28

logit analysis cannot capture. In this section, we investigate the determinants of the speed of

updating by exploiting the variations of those time-varying variables in our restricted panel.

We begin by exploring the simple correlations between the time-varying organizational

and software characteristics and the speed of installing software updates. Table 4 Column (1)

shows the estimated Cox proportional hazard model represented in Equation (4). The estimated

coefficient on the availability of a new software version is correlated with a higher hazard rate of

updating. The coefficient on ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" is significantly negative, however, implying that

running server software with security vulnerabilities correlates with a 1 − 𝑒𝑥𝑝	(−0.174)=16.0%

lower monthly updating rate. This correlation, however, suffers from reverse causality.

Organizations that less frequently or more slowly update their server software are also likely to

accumulate vulnerabilities in that software. In order to isolate the relationship between the

presence of security vulnerabilities in software and the decision of organizations regarding when

to update, we need to adjust for organizations’ baseline propensity to update their server

software.26

One way to control for organizations’ baseline propensity for updating is to include

variables that capture that propensity. Column (2) of Table 4 shows the results where we include

a range of organization and software usage characteristics as controls, for example,

organizations’ historical updating patterns captured by the variables 𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! and

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟!, and the full sets of state and industry dummies. The coefficient on

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" continues to be negative and significant, indicating sizable unexplained

heterogeneity in organizations’ updating decisions, apparently not explained by organizations’

observed characteristics.

A more flexible way to control for organizations’ baseline propensity for updating is to

stratify the Cox model at the organization level, as in Equation (5). Doing so allows each

organization to have a completely different baseline hazard and overcomes the reverse causality

issue. The stratification approach is similar to the organization’s fixed effects in a linear

regression model. We use the within-organization variations of the independent variables to

study their impact on the updating decisions.

26 We visualize the relationship between the rate of updating and the presence of severe security vulnerabilities in
server software in Appendix Figure A2.

 29

Column (3) of Table 4 shows the estimates of that model without additional controls. The

stratification changes the estimated sign on ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" . The coefficient is 0.067, both

positive and significant at 1%. This implies that if an organization’s Apache server software is

disclosed to have severe security vulnerabilities, holding all else fixed, it is associated with an

𝑒𝑥𝑝(0.067) − 1 = 6.9%	increase in the organization’s hazard rate of updating.

That the addition of controls in Columns (1)—(2) does not change the sign or

significance of the coefficient on ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" while stratification by organization in

Column (3) does is telling. Organizations’ software updating behavior is more associated with

unobservable organization characteristics than observed ones. Updating decisions largely cannot

be explained by obvious factors, such as industry, geography, website traffic, usage of cloud

services, or even technologies on site. Instead, organizations likely have operational differences

in software updating habits for various idiosyncratic reasons.

The other rows of Table 4 Column (3) show that organizations are more responsive to the

availability of new software than the announcement of a severe security vulnerability in the

software they use. The coefficient on 𝑛𝑒𝑤𝑀𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" is substantially positive

and significant, at 0.680. This implies that if there is a newer minor version than the version of

Apache the organization is currently using, holding all else fixed, including the availability of

newer major versions, it is associated with an 𝑒𝑥𝑝(0.680) − 1 = 97.4% increase in the

organization’s probability of updating per month.

Column (4) of Table 4 further breaks down the effects of vulnerability disclosures and

new releases on the propensity to update. Column (4) of Table 4 adds coefficients for if the

version of Apache software an organization is using has a severe security vulnerability disclosed

within the previous three months and if the updates available to an organization contain fixes for

severe security bugs, non-severe security bugs, as well as if the update contains new or improved

features unrelated to security.

The coefficient on 𝑤𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑒𝑀𝑜𝑛𝑡ℎ𝑠𝑆𝑖𝑛𝑐𝑒𝐴𝑑𝑑𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" is large, positive, and

significant at 0.214, meaning that an organization would increase its probability of updating by

𝑒𝑥𝑝	(0.214) − 1 = 23.9% if a severe vulnerability was disclosed less than three months ago.

Moreover, the inclusion of this variable makes the coefficient on ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" close to zero

 30

and insignificant, suggesting that organizations’ responses to severe vulnerabilities are

concentrated to within three months since each disclosure.

The coefficient on 𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!", which captures the number of severe

vulnerabilities the new minor version has fixed, is positive but small and not statistically

significant. The coefficient on 𝑛𝑜𝑛𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!", which captures the number of non-

severe vulnerabilities the new minor version has fixed, is negative and significant. Each

additional fix of non-severe bugs is associated with 1 − 𝑒𝑥𝑝	(−0.012) = 1.2% lower hazard rate

of updating. The coefficient on 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠!", which captures the number of feature

changes the new minor version has implemented, is similarly negative and significant. Each

additional feature change is associated with 1 − 𝑒𝑥𝑝	(−0.007) = 0.7% less updating. This

implies that updates that contain many feature changes are also less likely to be installed

immediately.

The results in Table 4 Column (4) demonstrate that organizations are more responsive to

easily installed, incremental software updates than larger and more complex ones. New minor

software versions are more likely to inspire an organization to adopt that update quickly. In

contrast, major updates or updates composed of many non-essential feature changes are less

likely to garner fast adoption.

Lastly, we examine if there is heterogeneity across organizations in their responses to

vulnerability disclosures and releases of new versions. Specifically, Column (5) of Table 4, we

interact the organizational attributes with vulnerability disclosures and the availability of new

versions.

The estimated coefficient on the interaction term 𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" ×

ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! is 0.157 and significant. This implies that organizations have an

𝑒𝑥𝑝	(0.157) − 1 = 17.0% higher probability of updating per month when a new minor version

is available if Alexa ranked the organization’s website as among the top one million by traffic in

2010. High-traffic websites are frequently the target of cybercriminals, and, therefore, may see

considerable benefits to installing updates to their server software.

Column (5) of Table 4 also shows that organizations using the cloud are more responsive

to releasing new software versions. The coefficient on the 𝑐𝑙𝑜𝑢𝑑!" variable is large, negative, and

significant, meaning that if a site is hosted on the cloud, it is associated with a smaller probability

 31

of updating per month at the baseline. The interaction term 𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" ×

𝑐𝑙𝑜𝑢𝑑!", however, is large, positive, and significant, meaning that when new minor releases

come out, being hosted on the cloud is associated with a higher probability of updating. This

suggests that organizations may face different incentives in updating on the cloud. For example,

monitoring day-to-day may become costly, but new releases may prompt IT professionals to

perform checkups and maintenance.

Taken together, these results demonstrate that costs and benefits are associated with the

responsiveness of organizations to changes in their server software’s up-to-datedness. Cloud

providers may be able to lower the relative cost of responding to software releases. At the same

time, high traffic to a website might encourage an organization to install new minor versions of

server software when released.

Similar to high-traffic websites, public firms may also face increased visibility, making

them particularly attractive targets for cyberattacks. In Column (6) of Table 4, we repeat our

analysis regarding heterogeneity, focusing exclusively on publicly traded firms in our sample. In

addition, because public firms disclose more information about their firm activities, we include

additional control variables.

The estimated coefficient on 𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" ×𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠! is

positive and significant. This coefficient suggests that when new minor releases come out, an

additional monetization technology embedded on a firm’s website is associated with an

𝑒𝑥𝑝	(0.123) − 1 = 13.1% increase in the hazard rate of updating. The coefficient on the

interaction term 𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" × 𝑡𝑒𝑐ℎ𝑠! suggests that that when new minor

releases come out, an additional category of technology embedded on the firm’s website is

associated with a 1 − 𝑒𝑥𝑝	(−0.058) = 5.6% decrease in the hazard rate of installing updates.

Despite the much smaller sample size and the compromise on the precision of the

estimates, the results in Column (6) highlight that public firms are more responsive to the new

release of new software versions when they monetize their websites and thus have higher

benefits to maintaining secure websites, and are less responsive when their websites are

technically more complex.

For both the broader sample of organizations and the sub-sample of publicly traded firms,

releases of software updates, rather than the announcement of security vulnerabilities, are the

 32

primary instigator of the pace of adopting updates. Similarly, the technical complexity of an

organization’s website and the content of the new release slows the pace at which an

organization installs important software updates.

5.6. Robustness and Alternative Remediation Methods

Some severe security vulnerabilities associated with Apache only impact a subset of

Apache deployments. For example, a bug may create a vulnerability for organizations running

the Apache software on a Linux-based server, but not create a vulnerability for organizations

running the Apache software on a Windows-based server. If vulnerabilities are bespoke to their

context, then organizations may reasonably forgo installing updates that are unrelated to their

server setup. During the time frame of our analysis, 5 out of the 28 severe security vulnerabilities

in Apache only impacted deployments on specific operating systems. In Appendix Tables A3

and A4, we test if these vulnerabilities qualitatively change our results by dropping them from

our regressions. The sequential logit regressions in Table A3 shows that the results are

qualitatively and quantitatively similar when we drop event windows around the releases of fixes

to operating system-specific vulnerabilities. When it comes to the time-to-update in the survival

analysis, if organizations are more responsive to vulnerabilities specific to their operating

systems, we will observe the coefficient on ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" to be biased downward when we

drop operating system-specific vulnerabilities in the construction of the ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!"

variable. Appendix Table A4 shows that the coefficient on ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" turns negative,

consistent with this intuition. The coefficients of other variables are similar to those in Table 4.

In addition, organizations may choose to ignore or delay installing updates related to

severe security vulnerabilities that do not seem easily exploitable. In particular, if the potential

costs of installing updates are high, organizations may wait to install updates that have a low

probability of being exploited. Furthermore, they may use that delay time to learn from their

counterparts about any technical issues or pitfalls from installing the updates. We test if security

vulnerabilities with low potential exploitability have a sizeable impact on our results. In

Appendix Tables A5 and A6, we re-estimate our main specifications, but drop 9 out of the 28

severe security vulnerabilities that are not considered to be highly exploitable. Again, overall, the

coefficients in Appendix Tables A5 and A6 demonstrate the same basic results as our previous

results. One difference, however, is that the coefficient on the organization using a cloud service

 33

provider is no longer negative and significant in the sequential logit regressions. This could be

because cloud hosts are more attentive to both highly exploitable and low exploitable

vulnerabilities, whereas firms that are not on a cloud provider focus more attention on highly

exploitable vulnerabilities.

Finally, organizations may be slow to patch their web server software because they rely

on other forms of remediations. For example, organizations may have intrusion detection

systems (IDSs) installed that provide alerts when suspicious activity is found on the

organizations’ machines. If the IDS provider updates their database of vulnerabilities in a timely

manner, organizations may at least be able to detect the exploitation of a vulnerability even if

they have yet to install the software patch closing that vulnerability (Ransbotham, et al, 2012).

Unfortunately, our data does not allow us to observe which organizations contract with an IDS

and which do not.

6. Conclusion and Discussion
This study examined the largest assembled dataset tracking security vulnerabilities in

open-source server software used by over 150,000 organizations in the United States between

2000 and 2018. Our goal was to understand a previously unexplored research question: how fast

do software users respond to the availability of secure versions, and what determines the

variance in the installation distribution? Previous research on cybersecurity has primarily

focused on the role of the software vendors in providing updates for vulnerabilities and took for

granted that users would automatically implement them, an approach that ignores the significant

heterogeneity in whether and when software users respond to such updates.

Across our data, we found widespread usage of insecure server software by

organizations. In nearly every month between 2000 and 2018, no less than 19% of the Apache

servers in use contained a severe security vulnerability. This alarming finding means that the

opportunities for malicious actors to exploit vulnerabilities are extremely widespread online.

We also found that organizational routines regarding updating server software are hard to

predict using the observable characteristics of organizations in our data. Organizations can be

broadly classified as Frontier Chasers (FC), Do-Nothing (DN) firms, and Do-Something (DS)

 34

firms based on how quickly they update to new versions of the Apache server software after its

release. FCs are those that keep their software at the technological and security frontier by

immediately installing updates and security patches as they become available. DNs choose a

baseline rate of update that largely ignores available software updates. DSs are those that opt not

to install updates immediately after their release yet do intend to install the updates eventually.

Our analysis revealed that an organization’s industry, geography, and characteristics of

the organization’s website do not strongly predict the organization’s routine regarding software

updates. Instead, persistent unobservable aspects of organizations explain much of the variation

in the updating routines. These unobservables may include organizational culture,

complementary technologies, external vendor relationships, or other factors for which

observational data cannot be easily obtained.

Lastly, we examined the organizational characteristics and attributes of Apache updates

that predict how quickly an organization will install an update. Econometrically, analyzing

organizational characteristics poses a challenge, as there is a reverse causality concern that

makes vulnerabilities and slow responses to available software updates appear correlated: the

longer that an organization uses a version of software, the more likely that version of software is

to contain a severe vulnerability. Implementing a hazard model approach with stratification,

thereby allowing for organization-specific proclivities to upgrade, we undercover that the factors

most predictive of an organization installing a software quickly are those that cut down the cost

of the update, such as the usage of cloud-hosting services such as AWS, and those that raise the

benefits of a secure website, such as the presence of monetization technologies on the site. The

factors that are more predictive of slower rates of installing updates are organizations whose

websites are more technically complex and may need to be more careful about the potential of

updates to break components of their site. As for the attributes of the Apache updates that may

affect organizations’ responses to available updates, we documented that software updates that

are smaller and contain fewer major security updates are more likely to be adopted by

organizations versus updates that contain new features or major security patches.

The findings in this paper highlight ways that organizations can increase cybersecurity.

First, leaders of organizations can institute organizational routines that are attentive to

cybersecurity and software management. Our data highlighted that most organizations do not

routinely install software updates within the six months following their release. Indeed, we found

 35

relatively few firms that demonstrated the habit of installing software updates when they became

available. And yet, cyberattacks are likely to pick up on hints from these update releases and

target sites during the months following the release (Mitra and Ransbotham, 2015). Therefore,

managers should consider if a routine that includes updating at regular intervals is beneficial for

their organization. Second, organizations can take actions that reduce the cost of installing

updates. One way that an organization can decrease the frictions involved in updates is by

hosting their website on a cloud-based platform that assists with installing software updates.

Another way that organizations can reduce friction is by decreasing the technological complexity

of their website. Many websites use a complex web of technologies in the code of their website.

The complexity, however, makes it challenging for a firm to install updates, as the update may

break the components of the site. Managers who wish to mitigate such friction can consider

pruning the technologies utilized for serving the site.

Our findings also have implications for policymakers. First, scholars and policymakers

have debated whether or not to mandate the disclosure of software vulnerabilities (Arora, Telang,

and Xu, 2008). Given how slow and unthorough organizations are installing updates, mandating

disclosure about software vulnerabilities may be socially inefficient. Disclosures of software

vulnerabilities could point malicious actors towards exploitable bugs without instigating users'

faster adoption of software updates. Second, software vendors have been torn between two

approaches: disclosing information about vulnerabilities in hopes that the description of the

problem might instigate users to install patches or releasing software updates without details on

vulnerabilities (Mitra and Ransbotham, 2015). Our findings suggest that the latter approach, in

which little information about vulnerabilities is disclosed, warrants more consideration. Our

analysis of the time until a firm installed a software update revealed that fixes for severe bugs in

an update did not significantly speed up the installation of that update. Instead, much of the

variation in time to installation derives from persistent organizational routines and unobservable

organizational heterogeneity. This suggests that disclosing more information about

vulnerabilities will give malicious actors more information to craft their attacks but may not jolt

firms into hardening their defenses. Third, scholars have debated if software vendors should be

liable for the cost of installing patches (August and Tunca, 2011). The lengthy delay between the

release of software updates and the installation that we discovered in our data reveals that the

costs associated with installing patches must be quite high for many firms. While it may be

 36

challenging to enact this policy for open-source software, our results suggest that subsidizing

patching costs may be beneficial to increasing cybersecurity.

Our work does have limitations. First, we are only examining Apache web servers. While

open-source server software operates on the majority of servers today (Greenstein and Nagle,

2014), the process of installing updates on proprietary server software, especially from software

vendors that automatically send software updates to users, may be different. We were able to

acquire data for our analysis because Apache server software is open source, the Apache

Foundation is transparent about vulnerability reports, and the Apache Foundation documents and

releases information on the contents of every software update. Proprietary software vendors are

less transparent about their products and users. However, future research on the usage of

proprietary software would enable a more complete picture of software user behavior more

generally. Second, we have limited ability to match our data on server software decisions at

organizations with other management practices at those organizations. The observed routines

regarding software updates may reflect broader managerial routines or IT investments. While we

have attempted to match our data with information in the World Management Survey, the

overlap in samples provide limited statistical power for analysis, and the select sample of

matching firms constrains the external validity of any findings. We hope that future researchers

will find ways to expand on the work that we have begun by attempting to understand how

managerial practices more broadly influence IT and cybersecurity investments.

References
Accenture. 2019. “Cost of Cybercrime Study.” Ninth Annual. https://www.accenture.com/us-

en/insights/security/cost-cybercrime-study.

Acronis International. 2017. “The NHS Cyber Attack: How and Why It Happened, and Who Did
It.” Case Study. Acronis International. https://www.acronis.com/en-us/articles/nhs-cyber-
attack/.

Aral, Sinan, Erik Brynjolfsson, and D.J. Wu (2006), "Which came First, IT or Productivity? The
Virtuous Cycle of Investment and use in Enterprise Systems," Twenty Seventh
International Conference on Information Systems, 27, 22.

Arbaugh, W. A., W. L. Fithen and J. McHugh, "Windows of vulnerability: a case study
analysis," in Computer, vol. 33, no. 12, pp. 52-59, Dec. 2000, doi: 10.1109/2.889093.

 37

Arora, Ashish, Rahul Telang, and Hao Xu. 2008. “Optimal Policy for Software Vulnerability
Disclosure.” Management Science 54 (4): 16.

Arora, Ashish, Ramayya Krishnan, Rahul Telang, Yubao Yang, 2010, "An Empirical Analysis of
Software Vendor's Patch Release Behavior: Impact of Vulnerability Disclosure"
Information Systems Research, 21, 1, 115-132.

August, Terrence, and Marius Florin Niculescu, Hyoduk Shin, 2014, "Cloud Implications of
Software Network Structure and Security Risks," Information Systems Research, 25, 3,
489-510.

August, Terrence, and Tunay Tunca, 2006, "Network Software Security and User Incentives,"
Management Science, 52, 11, 1703-1720.

Barrett, M. (2018), Framework for Improving Critical Infrastructure Cybersecurity Version 1.1,
NIST Cybersecurity Framework, [online],
https://doi.org/10.6028/NIST.CSWP.04162018, https://www.nist.gov/cyberframework
(Accessed July 17, 2023)

Bessen, Jim, and C. Righi (2019). "Shocking Technology: What Happens When Firms Make
Large IT Investments?" SSRN Electronic Journal.

Brynjolfsson, Erik, and Lorin Hitt, 2003, “Computing Productivity: Firm-Level Evidence.”
Review of Economics and Statistics, 85, 4, 793-808.

Cavusoglu, Hasan, Huseyin Cavusoglu, and Jun Zhang. 2008. “Security Patch Management:
Share the Burden or Share the Damage?” Management Science 54 (4): 657–70.

Choi, J.P., Fershtman, C. and Gandal, N. (2010), “Network Security: Vulnerabilities And
Disclosure Policy,” The Journal of Industrial Economics, 58: 868-
894. https://doi.org/10.1111/j.1467-6451.2010.00435.x

Cohen, M. D., & Bacdayan, P. (1994). Oganizational routines are stored as procedural memory:
Evidence from a laboratory. Organization Science, 5(4), 554–
568. https://doi.org/10.1287/orsc.5.4.554

Comino, Steven, Fabio Manenti, and Franco Mariuzzo, 2018, "Updates Management in Mobile
Applications: iTunes versus Google Play." Journal of Economics and Management
Strategy, 28, 3, 392-419.

Cyert, R. M., & March, J. G. (1963). A behavioral theory of the firm. Prentice Hall/Pearson
Education.

Dey, Debabrata, Atanu Lahiri, and Guoying Zhang, 2015, "Optimal Policies for Security Patch
Management," Informs Journal on Computing, 27, 3, 462-477

 38

Dissanayake, Nesara, Asangi Jayatilaka, Mansooreh Zahedi, M. Ali Babar, 2022, "Software
Security Patch Management -- A Systematic Literature of Challenges, Approaches,
Tools, and Practices," Information and Software Technology, 144,106771.

Dissanayake, Nesara, Mansooreh Zahedi, Asangi Jayatilaka, and Muhammad Ali Babar. 2022.
Why, How and Where of Delays in Software Security Patch Management: An Empirical
Investigation in the Healthcare Sector. Proc. ACM Hum.-Comput. Interact. 6, CSCW2,
Article 362 (November 2022), 29 pages. https://doi.org/10.1145/3555087

Efron, Bradley. “Logistic Regression, Survival Analysis, and the Kaplan-Meier Curve.” Journal
of the American Statistical Association 83, no. 402 (1988): 414–25.
https://doi.org/10.2307/2288857.

EY Americas, 2021. " Cybersecurity: How do you rise above the waves of a perfect storm?,”
Report, July 22, 2021, https://www.ey.com/en_us/cybersecurity/cybersecurity-how-do-
you-rise-above-the-waves-of-a-perfect-storm.

Fine, JP. 2002. “Comparing Nonnested Cox Models.” Biometrika 89 (3): 635–48.

Foster, L., John Haltiwanger, and C.J. Krizan. (2001), "Aggregate Productivity Growth: Lessons
from the Microeconomic Evidence." In (eds) Hulten, Charles, Edwin Dean, and Michael
Harper, New Developments in Productivity Analysis. NBER; Cambridge, MA.

Fowler, Bree, (2023), “Data Breaches Hit Lots More People in 2022,” CNET,
https://www.cnet.com/tech/services-and-software/data-breaches-hit-lots-more-people-in-
2022/

Goodin, Dan, (2017), “Failure to patch two-month-old bug led to massive Equifax breach,”
Arstechnica, September 13, 2017, https://arstechnica.com/information-
technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-
bug/.

Goldenberg, Amit, and Julian Zlatev. (2022) "Atlanta Ransomware Attack (A)." Harvard
Business School Case 923-009.

Grambsch, Patricia M, and Terry M Therneau. 1994. “Proportional Hazards Tests and
Diagnostics Based on Weighted Residuals.” Biometrika 81 (3): 515–26.

Greenstein, Shane, and Frank Nagle. “Digital Dark Matter and the Economic Contribution of
Apache.” Research Policy 43, no. 4 (May 2014): 623–631.

Harvey, Sarah. 2018. “Ransomware Alert: Lessons Learned from the City of Atlanta,”
KirkpatrickPrice Blog, April 3, 2018, https://kirkpatrickprice.com/blog/ransomware-
alert-lessons-learned-city-atlanta/

Hui-Wen, Koo and I.P.L. Png, “Private security: Deterrent or diversion?” International Review
of Law and Economics, vol. 14 (1), 1994, https://doi.org/10.1016/0144-8188(94)90038-8.

 39

IBM. 2020. “Compromised Employee Accounts Led to Most Expensive Data Breaches Over
Past Year.” Cambridge, MA: IBM. https://newsroom.ibm.com/2020-07-29-IBM-Report-
Compromised-Employee-Accounts-Led-to-Most-Expensive-Data-Breaches-Over-Past-
Year.

Jacobs, Jay, Sasha Romanosky, Idris Adjerid, and Wade Baker, 2020, “Improving vulnerability
remediation through better exploit prediction,” Journal of Cybersecurity,
6(1), https://doi.org/10.1093/cybsec/tyaa015

Jorgenson, Dale. 2005, Productivity, Vol. 3 Information Technology, and the American Growth
Resurgence. MIT Press.

Jorgenson, Dale W., Mun S. Ho, and Jon D. Samuels. 2016. “The Impact of Information
Technology on Postwar U.S. Economic Growth” Telecommunications Policy. 40(5),
398-411.

Kang, Hye Young, 2022, "Too Much can be as bad as too little: Product Update Strategy for
Online Digital Platform Complementors." Industrial and Corporate Change, 31, 6, 1494-
1516.

Kleinbaum, David G, and Mitchel Klein. 1996. Survival Analysis a Self-Learning Text. Springer.

Leyden, Ben, 2022, "There's an App (Update) for That." Working Paper. Cornell. April.

Li, He, Sungjin Yoo, and William Kettinger, 2021, "The Role of IT Strategies and Security
Investments in Reducing Organizational Security Breaches," Journal of Management
Information Systems, 38, 222-245.

Liu, Che-Wei, Peng Huang, and Henry Lucas, 2017, "It Centralization, Security Outsourcing,
and Cybersecurity Breaches: Evidence from US Higher Education," ICIS Proceedings.
http://aisel.aisnet.org/icis2017/Security/Presentations/1.

McElheran, Kristina, 2015, "Do Market Leaders Lead in Business Process Innovation? The
Cases(s) of E-Business Adoption," Management Science, 61, 6, 1197-1216.

Mell, Peter, Karen Scarfone, and Sasha Romanosky. 2007. “A Complete Guide to the Common
Vulnerability Scoring System Version 2.0,” FIRST, [online],
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=51198,
http://www.first.org/cvss/cvss-guide.pdf (Accessed May 30, 2023).)

Mitra, Sabyasachi, and Sam Ransbotham. 2015. “Information Disclosure and the Diffusion of
Information Security Attacks.” Information Systems Research 26 (3): 565–84.
https://doi.org/10.1287/isre.2015.0587.

Mookerjee, Vijay, Radha Mookerjee, Alain Bensoussan, and Wei T. Yue. 2011. “When Hackers
Talk: Managing Information Security Under Variable Attack Rates and Knowledge
Dissemination.” Information Systems Research 22 (3): 606–23.
https://doi.org/10.1287/isre.1100.0341.

 40

Murciano-Goroff, Raviv, Ran Zhuo, Shane Greenstein, 2021. “Unsung Software and Veiled
Value Creation: Illustrations from Server Software.” Research Policy. 50, Pp. 1-31.

Palmer, Danny. 2017. “WannaCry Ransomware: Hospitals Were Warned to Patch System to
Protect against Cyber-Attack - but Didn’t.” ZDNet, October 27, 2017.
https://www.zdnet.com/article/wannacry-ransomware-hospitals-were-warned-to-patch-
system-to-protect-against-cyber-attack-but-didnt/.

Ranger, Steve. 2019. “Cybersecurity: One in Three Breaches Are Caused by Unpatched
Vulnerabilities.” ZDNet, June 4, 2019. https://www.zdnet.com/article/cybersecurity-one-
in-three-breaches-are-caused-by-unpatched-vulnerabilities/.

Ransbotham, Sam, Sabyaschi Mitra and Jon Ramsey, 2012. “Are Markets for Vulnerabilities
Effective?,” MIS Quarterly 36(1) (March 2012).

Souppaya, Murugiah and Karen Scarfone, “Guide to Enterprise Patch Management Planning:
Preventive Maintenance for Technology,” NIST, SP 800-40 Rev. 4 (April 2022).

Steinberg, Scott. 2019. “Cyberattacks Now Cost Companies $200,000 on Average, Putting Many
out of Business.” CNBC. October 13, 2019.
https://www.cnbc.com/2019/10/13/cyberattacks-cost-small-companies-200k-putting-
many-out-of-business.html.

Tambe, Prassanne, and Lorin, Hitt, 2012. “The Productivity of Information Technology
Investments: New Evidence from IT Labor Data.” Information Systems Research. 3. 599-
617.

Tambe, Prassane, Lorin Hitt, Daniel Rock, and Erik Brynjolfsson. (2020), "Digital Capital and
Superstar Firms," SSRN.

Zolas, N, Z. Kroff, E. Brynjolfsson, K. McElheran, D.N. Beede, C. Buffington, N. Goldschlag,
L. Foster, and E. Dinlersoz (2020), "Advanced Technologies Adoption and use by U. S.
Firms: Evidence from the Annual Business Survey." NBER Working paper 28290.

 41

Tables and Figures
Figure 1. A simple model of user decisions

 42

Figure 2 Organizations Operating with Severe Security Vulnerabilities

 (a) Reported (b) Disclosed

Notes: A new website is the first capture of a website by the Internet Archive between

Jan 1, 2000, and August 31, 2018. Only vulnerabilities rated to have “high” severity by the

National Vulnerability Database (NVD) are included in computing the fractions. Figure 2(a)

plots the fraction of organizations in our broad panel between December 2001 and August 2018.

The determination of when a severe security vulnerability was discovered is by the time the

vulnerability was reported to the Apache Software Foundation. The first severe vulnerability

report in our data is from November 2001. Figure 2(b) plots the fraction of organizations in our

broad panel between July 2002 and August 2018. The determination of when a severe security

vulnerability became public is by the Apache Software Foundation. The first severe vulnerability

that became public in our data was in June 2002.

 43

Figure 3 Organizations Operating with Fixed Severe Security Vulnerabilities

Notes: Figure 3 plots the fraction of organizations in our broad panel between Jan 2000

and August 2018. The determination of when a severe security vulnerability was fixed is by the

Apache Software Foundation. The first severe vulnerability fix release date in our data is

September 1998.

An example observation window

 44

Figure 4 Heterogeneity in Operating with Fixed Severe Security Vulnerabilities

(a) Existing websites vs. new websites (b) Large vs. small organizations

(c) Geography (d) Industry

Notes: Panels (b), (c), and (d) include observations from organizations that have their

information in the Mint Global database. The number of such organizations is 145,515 (96% of

the broad panel). The classification of industries is by two-digit NAICS code. The rest of the

notes of Figure 3 apply.

 45

Table 1 Summary of Samples and Data Sources

 Data Description Frequency Source

Key samples and data sources

(i)(a) Broad panel of

organizations’
Apache web server
usage

The version of the Apache web server of
150,854 homepages of US organizations

Monthly between Jan 1, 2000, and
August 31, 2018; 4,863,383
observations in total; on average,
each organization has 32
observations.27

The Internet
Archive

(i)(b) Restricted panel of
organizations’
Apache web server
usage(frequent
captures,
uncensored)

The version of the Apache web server of
70,092 homepages of US organizations that
were frequently captured by the Internet
Archive;28 each observation is not from a
left-censored updating cycle and is not the

Monthly between Jan 1, 2000, and
August 31, 2018; 3,104,455
observations in total; on average,
each organization has 44
observations.30

The Internet
Archive

27 If an organization’s website only became active after Jan 1, 2000, or went offline before Dec 31, 2018, the months before the website went online and the
months after the website went offline do not have observations. For some organizations, the Internet Archive did not capture the active websites every month.
Therefore, those months do not have observations. In addition, some organizations have used other web servers (such as Microsoft’s IIS or Nginx) during the
period. Those observations are not included.

28 We only include organizations that were, on average, captured by the Internet Archive every three months or more frequently. Moreover, we only have
organizations with at least ten monthly observations of Apache web server usage. Doing so allows us to observe organizations’ upgrading decisions over a
duration equal to at least two average release cycles of the Apache web server software, as the average release cycle of an Apache web server is 4.5 months. We
then drop an observation if the time gap between the observation and the following observation of the organization is more than 4.5 months apart.

30 Footnote 22 applies.

 46

last observation of Apache usage of the
organization in the raw data29

(ii) Apache web server
security
vulnerabilities

Security vulnerability reported to the
Apache Software Foundation; variables
include the version(s) affected, date of
reporting, the date the vulnerability was
made public, date of release and version of
the fix, and (when available) who was
credited with the discovery/reporting of the
vulnerability

158 unique vulnerabilities; 5,192
vulnerability-version pairs; for
vulnerabilities reported before or on
August 31, 2018

The Apache
Foundation

(iii) Severity of security
vulnerabilities

Severity rating of “high,” “medium,” or
“low” for each security vulnerability;
breakdown scores for the impact and
exploitability of each vulnerability are also
available

28 vulnerabilities were rated “high,”
123 were rated “medium,” and 7 were
rated “low.”

National
Vulnerability
Database (NVD)

(iv) Apache web server
version release dates

The release date of each minor version
(e.g., 2.4.1) of the Apache web server
software

115 releases of minor versions
between 2000 and 2018; those minor
versions belong to six different major
versions (e.g., 2.4)

Authors’
compilation

(v) Apache version
change logs

The number of changes implemented in
each release of a minor version; combined
with (ii), we can identify the number of
changes corresponding to fixing severe
vulnerabilities, fixing non-severe bugs, and
improving the features

 The Apache
Foundation

(vi) Release window
cross section of
organizations’

Organizations’ responses to releases of new
Apache versions that fixed severe security
vulnerabilities in their used versions;

Cross-sectional; each observation
corresponds to one organization
during one six-month release

Authors’
construction

29 Our survival models account for time-dependent covariates that vary monthly. Left-censoring due to the first data capture is problematic for all observations
associated with the left-censored updating cycles in determining the time-to-update. Right-censoring due to the last data capture is only difficult for the final
observation of the organization’s Apache usage in determining whether updating has happened during the final observed month. We, therefore, drop the
problematic observations.

 47

responses to bug
fixes

responses are measured in the six-month
window following each release, and fall
into three categories: frontier chaser
(installing the release within two months),
do-something (installing within six
months), and do-nothing (not installing
within six months)

window; 161,106 observations in
total from 55,558 organizations and
15 six-month release windows; we
only include releases that fixed severe
security vulnerabilities and that were
at least six months apart from the next
such releases

based on data
items (1)(b)-(v)

Additional covariates

(vii) Alexa web traffic

ranking
Ranking of top one million websites by
traffic

Yearly between 2010 and 2018

Alexa

(viii) Organizations’ IT
operations

Characteristics of US organizations’ IT
operations; variables include the number of
personal computers, the number of IT staff,
IT budget, and software budget

A cross-sectional snapshot of the
database in 2017

Harte Hanks

(ix) Organizations’ IT
sourcing

Whether the organization has outsourced its
IT operations

The database contains the IT sourcing
variable yearly between 2005 and
2009 for a small group of
organizations; we consider an
organization to have outsourced its IT
operations if it has outsourced in one
or more years during 2005—2009

Harte Hanks

(x) Websites’ cloud
usage

Whether an organization’s web server has
used an IP address associated with AWS,
Azure, or Google Cloud

 For AWS, Azure, and Google usage,
we use snapshots of all IP addresses
associated with those services taken
on March 25, 2020, August 13, 2023,
and August 14, 2023 respectively.

AWS, Microsoft,
and Google

(xi)

Websites’
technology use

Technologies used in building 24,263
organizations’ homepages; 45 technology
categories, including analytics, e-

The data was captured between 2016
and 2018; we consider the website to
have used a particular technology if

HTTP Archive

 48

 commerce, and web frameworks; 531
technologies, including jQuery, Google Tag
Manager, and WordPress

we observe the usage of the
technology anytime during 2016—
2018

(xii) Disclosures of data
breaches

2,366 data breaches disclosed between
2005 and 2018; variables include the
disclosing organization, the date of
disclosure, the state and broad industry
category the organization operates in, and
the number of records affected

 Privacy Rights
Clearinghouse’s
Data Breach
Chronology

(xiii) Organization
characteristics

214,199 organizations in the US with at
least 50 employees; organizations are
identified by their homepages; variables
include location, NAICS code, number of
employees, and revenue

A cross-sectional snapshot of the
database on August 28, 2018

Mint Global by
Bureau van Dijk

(xiv)

Organization
characteristics
(public firms)

US public firms’ characteristics; variables
include total assets, capital expenditure,
depreciation and amortization, employees,
cash flow, and net income

The yearly panel between 2000 and
2018

Compustat

 49

Table 2 Summary statistics

Variable Obs. Mean SD Min Max
𝑢𝑝𝑑𝑎𝑡𝑒𝑑!" 3,104,455 0.062 0.240 0 1
𝑡𝑖𝑚𝑒𝑇𝑜𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑜𝑛𝑡ℎ𝐸𝑛𝑑!" 3,104,455 17.926 18.543 1 202
𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! 2,701,344 0.338 0.473 0 1
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! 2,701,344 0.287 0.453 0 1
ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" 3,104,455 0.632 0.482 0 1
𝑤𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑒𝑀𝑜𝑛𝑡ℎ𝑠𝑆𝑖𝑛𝑐𝑒𝐴𝑑𝑑𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔!" 3,104,455 0.189 0.391 0 1
𝑛𝑒𝑤𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" 3,104,455 0.952 0.215 0 1
𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" 3,104,455 0.837 0.370 0 1
𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!" 3,049,753 0.348 0.707 0 4
𝑛𝑜𝑛𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!" 3,049,753 1.409 1.579 0 9
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠!" 3,049,753 20.331 21.336 0 91
ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! 3,104,455 0.219 0.414 0 1
𝑙𝑜𝑔𝑃𝐶𝑠! 2,522,559 4.206 1.471 0 11.458
𝐼𝑇𝑆𝑡𝑎𝑓𝑓𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦! 2,522,337 1.457 1.417 0 9
𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡! 2,522,559 12.816 2.539 0 23.575
𝑙𝑜𝑔𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! 2,522,559 11.103 2.421 0 22.222
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! 711,441 0.171 0.377 0 1
𝑐𝑙𝑜𝑢𝑑!" 3,104,455 0.022 0.147 0 1
𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! 665,360 10.047 3.849 1 22
𝑡𝑒𝑐ℎ𝑠! 665,360 13.520 6.104 1 38
𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠! 665,360 2.842 2.240 0 15
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 3,104,455 0.490 1.343 0 18
𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 3,104,455 1.630 3.916 0 21.822

 50

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" 3,104,455 2.171 3.878 0 31
𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" 3,104,455 4.178 5.885 0 21.822
𝑠𝑡𝑎𝑡𝑒! 3,019,376
𝑛𝑎𝑖𝑐𝑠! 2,958,680
𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡! 3,026,268 5.339 1.196 3.932 14.715
𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒! 3,026,268 9.213 2.802 0 20.031
𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!# 3,104,455 0.027 0.161 0 1
𝑙𝑜𝑔𝐶𝑎𝑝𝑥𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# 82,935 8.635 3.416 -5.690 17.015
𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# 82,935 6.482 2.859 0 14.604
𝑙𝑜𝑔𝑇𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑒𝑡𝑠𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# 82,935 19.469 3.886 0 28.424
𝑙𝑜𝑔𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# 82,935 15.332 4.556 0 24.029
𝑙𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# 82,935 5.346 16.082 -

23.779

24.455
𝑙𝑜𝑔𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# 80,701 0.008 0.215 -2.534 1.825

Notes: Each observation represents one month in an updating cycle of an organization that used Apache server software. The

number of organizations in this data is 70,092. The event is making an update of the version of Apache server software an

organization used. The number of events is 191,106. The number of updating cycles is 308,689. 308,689 – 191,106= 117,583 updating

cycles are right-censored.

 51

Table 3 Sequential logit regressions of cross-sectional determinants of user decisions

 Sequential logit regression Sequential logit regression
 (1) (2) (3) (4)
 DN/DS vs FC DN vs DS DN/DS vs FC DN vs DS

𝑖𝑛𝑓𝑟𝑒𝑞𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! 0.167*** 0.192*** 0.169** 0.0490
 (0.0402) (0.0420) (0.0795) (0.0694)
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! -0.239*** -0.0987*** -0.195** -0.226***
 (0.0445) (0.0353) (0.0908) (0.0719)
𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡! 0.0379** 0.0122 0.0254 0.00790
 (0.0163) (0.0179) (0.0326) (0.0282)
𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒! -0.00138 0.000733 -0.00897 0.00232
 (0.00877) (0.00785) (0.0132) (0.0132)
𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!# -0.0646 0.0616 -0.0373 -0.00897
 (0.0786) (0.0801) (0.121) (0.116)
𝑙𝑜𝑔𝑃𝐶𝑠! 0.0445 0.0171 0.0166 0.0458
 (0.0298) (0.0316) (0.0573) (0.0654)
𝐼𝑇𝑆𝑡𝑎𝑓𝑓𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦! -0.0120 -0.00805 0.00644 -0.0165
 (0.0253) (0.0287) (0.0372) (0.0403)
𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡! -0.0377 -0.0595 0.0398 -0.00401
 (0.0450) (0.0400) (0.0910) (0.0839)
𝑙𝑜𝑔𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! 0.0399 0.0679 -0.0524 -0.0105
 (0.0446) (0.0468) (0.0823) (0.0856)
ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! 0.153*** -0.0155 0.0260 0.0168
 (0.0509) (0.0480) (0.0748) (0.0795)
𝑐𝑙𝑜𝑢𝑑!" -0.138 -0.577*** -0.128 -0.505***
 (0.119) (0.103) (0.198) (0.174)
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" -0.0492 0.0208 -0.100 0.0332
 (0.0482) (0.0495) (0.0665) (0.0621)
𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 0.0488 0.0249 0.0667** 0.0263
 (0.0312) (0.0239) (0.0319) (0.0283)
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" -0.00496 0.0560*** 0.00569 0.0232
 (0.0181) (0.0214) (0.0320) (0.0378)
𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" -0.0131 0.0207*** 0.0202 0.0396***
 (0.0114) (0.00691) (0.0129) (0.0127)

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 1 & 0.118 0.145
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0 (0.166) (0.169)

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 0 & 0.0658 -0.00625
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0 (0.0658) (0.0678)

 52

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! 0.0144 0.0245
 (0.0206) (0.0186)
𝑡𝑒𝑐ℎ𝑠! -0.00826 -0.0152
 (0.0131) (0.0146)
𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠! -0.00348 -0.0118

 (0.0265) (0.0279)
Constant 1.681*** 1.281*** 2.103*** 0.809**

 (0.126) (0.125) (0.322) (0.326)
State dummies Y Y Y Y
Industry dummies Y Y Y Y

Observations 108,385 108,385 26,540 26,540

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered by state and industry.

Columns (1) and (2) belong to the same regression. Columns (3) and (4) belong to the same

regression. The value at the beginning of the observation window is used for each variable with

time subscript 𝑡 for month or 𝑦 for year. For the variable 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑!, the dropped category is

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 1, where the variable is missing.

 53

Table 4 Cox proportional hazards analysis of updating decisions

 Cox proportional hazards regressions

 Public firms
 Stratified Stratified Stratified Stratified
 (1) (2) (3) (4) (5) (6)

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠() -0.174*** -0.263*** 0.067*** 0.003 0.160*** 0.381
 (0.005) (0.015) (0.007) (0.009) (0.051) (0.246)

𝑤𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑒𝑀𝑜𝑛𝑡ℎ𝑠𝑆𝑖𝑛𝑐𝑒𝐴𝑑𝑑𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔() 0.214***
 (0.009)

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠() × ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010(-0.054 0.099
 (0.037) (0.179)

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠() × 𝑐𝑙𝑜𝑢𝑑() 0.022 0.457
 (0.086) (0.359)

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠() × 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠(-0.006 -0.022
 (0.005) (0.024)

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠() ×𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠(-0.009 -0.062
 (0.008) (0.043)
𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒() 0.266*** 0.322*** 0.680*** 0.796*** 0.604*** 0.519

 (0.008) (0.025) (0.009) (0.011) (0.069) (0.323)

𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑() 0.008
 (0.005)

𝑛𝑜𝑛𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑() -0.012***
 (0.002)

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠() -0.007***
 (0.0002)

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒()
× ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010(

 0.157*** 0.726***

 (0.049) (0.230)

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒() × 𝑐𝑙𝑜𝑢𝑑() 0.292** 0.221
 (0.136) (0.453)

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒()

× 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠(
 -0.008 -0.058*

 (0.006) (0.034)

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒()

×𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠(
 0.022* 0.123**

 (0.012) (0.064)

 54

𝑛𝑒𝑤𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒() 0.076*** -0.063 0.370*** 0.422*** 0.273*** 0.187
 (0.013) (0.042) (0.014) (0.015) (0.039) (0.198)
𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟(-0.120***

 (0.015)

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟(0.185***
 (0.015)

𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡(-0.008
 (0.006)

𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒(0.003
 (0.003)

𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐(-0.058
 (0.028)

ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010(0.053**
 (0.014)

𝑐𝑙𝑜𝑢𝑑() 0.009 -0.460*** -0.351
 (0.034) (0.132) (0.459)

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠(-0.013**
 (0.004)

𝑡𝑒𝑐ℎ𝑠(0.004
 (0.003)

𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠(0.012*
 (0.004)

𝑙𝑜𝑔𝑃𝐶𝑠(-0.017
 (0.010)

𝐼𝑇𝑆𝑡𝑎𝑓𝑓𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦(0.015
 (0.008)

𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡(-0.011
 (0.019)

𝑙𝑜𝑔𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡(0.010
 (0.019)

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒() -0.038***
 (0.008)

𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒() -0.011***
 (0.002)

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑() -0.027***
 (0.003)

𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑() -0.013***
 (0.001)

𝑙𝑜𝑔𝐶𝑎𝑝𝑥𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡() -0.041
 (0.029)

 55

𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡() 0.037
 (0.027)

𝑙𝑜𝑔𝑇𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑒𝑡𝑠𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡() -0.252**
 (0.078)

𝑙𝑜𝑔𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡() -0.026
 (0.040)

𝑙𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡() -0.000
 (0.003)

𝑙𝑜𝑔𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡() 0.159
 (0.313)

State dummies N Y N N N N
Industry dummies N Y N N N N
Observations 3,104,455 548,959 3,104,455 3,049,753 665,360 44,955

Notes: *p<0.1; **p<0.05; ***p<0.01. Each observation represents one month in an updating cycle of an organization
that used Apache server software. The event is the decision to update the version of Apache server software.
Standard errors are clustered at the organization level.

 56

Appendix A1. Variable Definitions
Table A1 Variable definitions

Variable Definition

𝑢𝑝𝑑𝑎𝑡𝑒𝑑!"

Binary if organization 𝑖 makes an update to the
Apache server software in month 𝑡; an update happens
in month 𝑡	either when the organization uses a higher
major version in the next observed month (e.g., the
organization uses Apache 2.2 then changes to Apache
2.4) or when the organization uses a higher minor
version in the next observed month (e.g., the
organization uses Apache 2.2.10 then changes to
2.2.11)

𝑡𝑖𝑚𝑒𝑇𝑜𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑜𝑛𝑡ℎ𝐸𝑛𝑑!"

The number of months since organization 𝑖’s previous
update of Apache server software

𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! Binary if organization 𝑖 did not update server software
even once in the first nine observations of Apache
usage (Apache on average releases a new minor
version once every 4.5 months for a major version);
the variable is undefined for the first nine observations
of Apache usage of each organization because those
observations are used to construct the variable.

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! Binary if of the organization 𝑖 updated server software
two or more times in the first nine observations of
Apache usage; the variable is undefined for the first
nine observations of Apache usage of each
organization because those observations are used to
construct the variable.

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!"

Binary if the minor version of Apache software (e.g.,
Apache 2.2.10) organization 𝑖 used in the month 𝑡 that
publicly disclosed severe security vulnerabilities.

𝑤𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑒𝑀𝑜𝑛𝑡ℎ𝑠𝑆𝑖𝑛𝑐𝑒𝐴𝑑𝑑𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔!" Binary if the minor version of Apache software
organization 𝑖 used in month 𝑡 had additional severe
security vulnerabilities disclosed within three months
before month	𝑡

𝑛𝑒𝑤𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" Binary if a newer Apache version than organization 𝑖’s
adopted version in month 𝑡 was available in that

 57

month; for example, the variable is equal to 1 if
organization 𝑖 used in month 𝑡 version 2.2.x released
in month 𝑡$ < 𝑡, and 2.4.y was released after 𝑡′ and
was available at 𝑡

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" Binary if a newer Apache minor version than
organization 𝑖’s adopted version in month 𝑡 was
available in that month; for example, the variable is
equal to 1 if organization 𝑖 used in month 𝑡 version
2.2.10 released in month 𝑡$ < 𝑡, and 2.2.11 was
released after 𝑡′ and was available at 𝑡

𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!" The number of severe security vulnerabilities the
oldest new minor version has fixed; for example, if
organization 𝑖 used in month 𝑡 version 2.2.10 released
in month 𝑡$ < 𝑡, and 2.2.11, 2.2.12, and 2.2.13 were
released after 𝑡′ and were available at 𝑡, this variable
captures the number of severe security vulnerabilities
fixed in 2.2.11; if there are not new minor version
available in month 𝑡, this variable is set to zero

𝑛𝑜𝑛𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!" The number of non-severe bugs the oldest new minor
version has fixed; for example, if organization 𝑖 used
in month 𝑡 version 2.2.10 released in month 𝑡$ < 𝑡,
and 2.2.11, 2.2.12, and 2.2.13 were released after 𝑡′
and were available at 𝑡, this variable captures the
number of nonsevere bugs fixed in 2.2.11; if there are
not new minor version available in month 𝑡, this
variable is set to zero

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠!" The number of feature changes the oldest new minor
version has implemented; for example, if organization
𝑖 used in month 𝑡 version 2.2.10 released in month
𝑡$ < 𝑡, and 2.2.11, 2.2.12, and 2.2.13 were released
after 𝑡′ and were available at 𝑡, this variable captures
the number of feature changes in 2.2.11; if there are
not new minor version available in month 𝑡,, this
variable is set to zero.

ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! Binary, =1 if the organization 𝑖’s website was ranked
by Alexa in the top 1 million websites in 2010

𝑙𝑜𝑔𝑃𝐶𝑠! Logged value of (number of personal computers+1) at
organization 𝑖 in 2017 according to Harte Hanks; if
organization 𝑖 has multiple establishments, we only
use the number of personal computers at the

 58

establishment with the highest number of IT staff and
IT budget.

𝐼𝑇𝑆𝑡𝑎𝑓𝑓𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦! The number of IT staff at organization 𝑖 in 2017
according to Harte Hanks; if organization 𝑖 has
multiple establishments, we only use the value at the
establishment with the highest number of IT staff and
IT budget; this variable is categorical, it = 0 if IT staff
is equal to 0, = 1 if IT staff is between 1 to 4, = 2 if
IT staff is between 5 to 9, = 3 if IT staff is between 10
to 24, = 4 if IT staff is between 25 to 49, = 5 if IT
staff is between 50 to 99, = 6 if IT staff is between
100 to 249, = 7 if IT staff is between 250 to 499, = 8
if IT staff is between 500 to 999, = 9 if IT staff is
1000 and above

𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡! Logged value of (IT budget+1) at organization 𝑖 in
2017 according to Harte Hanks; if organization 𝑖 has
multiple establishments, we only use the IT budget at
the establishment with the highest number of IT staff
and IT budget.

𝑙𝑜𝑔𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! Logged value of (software budget+1) at organization 𝑖
in 2017, according to Harte Hanks; if organization 𝑖
has multiple establishments, we only use the software
budget at the establishment with the highest number of
IT staff and IT budget.

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑!

Binary if organization 𝑖 has outsourced its IT at least
once between 2005 and 2009, from Harte Hanks.

𝑐𝑙𝑜𝑢𝑑!" Binary if organization 𝑖’s website in month 𝑡	used an
IP address that belongs to AWS on March 25, 2020,
Azure on August 13, 2023, or Google Cloud on
August 14, 2023; data on historical IP addresses of
cloud providers are not readily available.

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! The number of technology categories embedded in
organization 𝑖’s website between 2016 and 2018;
examples of technology categories include analytics,
e-commerce, and web frameworks.

𝑡𝑒𝑐ℎ𝑠! The number of technologies embedded in organization
𝑖’s the website between 2016 and 2018; examples
include jQuery, Google Tag Manager, and WordPress.

 59

𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠! The number of monetization technologies embedded
in organization 𝑖’s. website between 2016 and 2018;
technologies in “analytics,” “tag managers,”
“advertising networks,” “marketing automation,” “e-
commerce,” and “payment processors” categories are
included; measures monetization intent.

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" The number of data breaches that have been disclosed
in the month before month 𝑡 in the state where
organization 𝑖’s headquarters are located.

𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" Logged value of (the sum of the number of records
affected+1) for data breaches that have been disclosed
in the month before month 𝑡 in the state where
oganization 𝑖’s headquarters are located.

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" The number of data breaches that have been disclosed
in the month before month 𝑡 in the broad industry
category that other organization	𝑖	operates in; broad
industry categories in the Data Breach Chronology
data are Healthcare and Medical Providers (Hospitals,
Medical Insurance Services), Businesses
(Retail/Merchant including Grocery Stores, Online
Retailers, Restaurants), Businesses (Financial
Services, Banking, Insurance Services), Businesses
(Manufacturing, Technology, Communications,
Other), Educational Institutions (Schools, Colleges,
Universities)

𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" Logged value of (the sum of the number of records
affected plus1) for data breaches that have been
disclosed in the month before month 𝑡 in the broad
industry category that other organizations operate in;
broad industry categories in the Data Breach
Chronology data are Healthcare and Medical
Providers (Hospitals, Medical Insurance
Services), Businesses (Retail/Merchant including
Grocery Stores, Online Retailers,
Restaurants), Businesses (Financial Services, Banking,
Insurance Services), Businesses (Manufacturing,
Technology, Communications, Other), Educational
Institutions (Schools, Colleges, Universities)

𝑠𝑡𝑎𝑡𝑒! State, where the organization’s headquarter is located

𝑛𝑎𝑖𝑐𝑠!

The organization 𝑖’s a two-digit primary NAICS code.

 60

𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡! Logged value of (employment+1) of organization 𝑖;
from the cross-sectional Mint Global sample of
organizations, a single value is associated with an
organization.

𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒! Logged value of (revenue+1) of organization 𝑖; if
revenue is negative, this variable is equal to −1 ×
log	(𝑎𝑏𝑠(𝑟𝑒𝑣𝑒𝑛𝑢𝑒) + 1); from Mint Global.

𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!# Binary if organization 𝑖 is a public firm in year 𝑦.

𝑙𝑜𝑔𝐶𝑎𝑝𝑥𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# Logged value of (capital expenditure+1) of
organization 𝑖 in year 𝑦; from Compustat, this variable
is only available for public firms.

𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# Logged value of (employment+1) of organization 𝑖 in
year 𝑦; from Compustat, this variable is only available
for public firms.

𝑙𝑜𝑔𝑇𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑒𝑡𝑠𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# Logged value of (total assets+1) of organization 𝑖 in
year 𝑦; from Compustat, this variable is only available
for public firms.

𝑙𝑜𝑔𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# Logged value of (depreciation and amortization+1) of
organization 𝑖 in year 𝑦; from Compustat, this variable
is only available for public firms.

𝑙𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# Logged value of (income before extraordinary
items+1) of organization 𝑖 in year 𝑦; if income is
negative, this variable is equal to −1 ×
log	(𝑎𝑏𝑠(𝑖𝑛𝑐𝑜𝑚𝑒) + 1); from Compustat, this
variable is only available for public firms.

𝑙𝑜𝑔𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!# Logged value of (cashflow+1) of organization 𝑖 in
year 𝑦; if cashflow is negative, this variable is equal to
−1 × log	(𝑎𝑏𝑠(𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤) + 1); from Compustat,
this variable is only available for public firms.

 61

Table A2. Correlation Matrix of Measures

 Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)
(1) ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" 1.00
(2) 𝑤𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑒𝑀𝑜𝑛𝑡ℎ𝑠𝑆𝑖𝑛𝑐𝑒𝐴𝑑𝑑𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔!" 0.30 1.00
(3) 𝑛𝑒𝑤𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" 0.24 0.06 1.00
(4) 𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" 0.43 0.10 0.53 1.00
(5) ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! 0.04 0.00 0.02 0.03 1.00
(6) 𝑙𝑜𝑔𝑃𝐶𝑠! 0.05 0.00 0.02 0.04 0.14 1.00
(7) 𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡! 0.03 0.01 0.01 0.03 0.08 0.73 1.00
(8) 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! -0.02 0.00 0.00 -0.01 -0.05 -0.12 -0.10 1.00
(9) 𝑐𝑙𝑜𝑢𝑑!" -0.12 -0.04 -0.00 -0.01 -0.00 -0.01 0.01 0.00 1.00
(10) 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! -0.02 -0.02 0.01 0.02 0.17 0.01 -0.02 0.01 0.06 1.00
(11) 𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠! 0.01 0.01 0.00 0.00 0.24 0.05 0.05 -0.00 0.04 0.45 1.00
(12) 𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" -0.06 -0.08 0.03 0.04 0.01 0.00 0.01 -0.00 0.14 0.02 -0.02 1.00
(13) 𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" -0.03 -0.08 0.03 0.03 0.01 -0.00 0.01 -0.00 0.11 0.02 -0.02 0.68 1.00
(14) 𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" -0.08 -0.14 0.05 0.06 -0.04 -0.03 -0.01 0.00 0.16 0.05 -0.02 0.29 0.22 1.00
(15) 𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" -0.02 -0.15 0.06 0.07 -0.03 0.02 0.01 -0.01 0.10 0.04 -0.03 0.19 0.21 0.65 1.00
(16) 𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡! 0.04 0.01 0.01 0.02 0.12 0.48 0.51 -0.09 0.00 -0.06 -0.01 -0.00 -0.00 -0.02 -0.00 1.00
(17) 𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒! 0.02 0.00 0.00 0.01 0.11 0.27 0.35 -0.05 0.02 0.03 0.03 0.02 0.03 -0.00 -0.01 0.58 1.00
(18) 𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!# 0.01 0.01 0.01 0.01 0.01 0.09 0.28 0.00 0.05 0.00 0.03 0.03 0.02 0.03 0.01 0.32 0.29 1.00

 62

Appendix A2. Kaplan-Meier Curve for Continued Usage of
Software Versions

Figure A1 visualizes the relationship between the time-to-update and the presence of

severe security vulnerabilities with Kaplan-Meier survival curves. The horizontal axis shows the

number of months an organization has been using a particular server software version. The

vertical axis shows the probability that the organization is still using that software version at each

time interval. We split the observations into those impacted by publicly disclosed severe security

vulnerabilities (dashed line) and those not (solid line). For example, this figure shows that 27%

of observations affected by publicly disclosed severe security vulnerabilities continued using the

same version after 30 months, whereas 22% of observations not impacted by publicly disclosed

severe security vulnerabilities continued using the same version.

The association displayed in Figure A1, however, suffers from reverse causality. The plot

suggests that operating software with a severe security vulnerability is associated with updating

in a less timely manner. Organizations that update software less frequently are more likely to

accumulate bugs over time. This would make the decision to update and the presence of security

vulnerabilities appear negatively correlated. Therefore, in our analysis in Table 4 column (3), we

control for organizations’ baseline propensity to update their software using stratefication.

 63

Figure A1. Kaplan-Meier survival curve for the continued usage of software versions with and
without severe security vulnerabilities

 64

Appendix A3. Additional Justification for Stratification
In this appendix, we discuss further justifications for stratifying by organization.

A standard way to test whether stratifying by a given independent variable is needed in a

Cox proportional hazard regression is to perform a test of the proportional hazards (PH)

assumption. The PH assumption of the Cox model states that one individual's hazard function is

proportional to another's. If a predictor does not satisfy the PH assumption, one can control for

that predictor by stratifying that predictor (Kleinbaum and Klein, 1996). Testing the PH

assumption based on weighted residuals (Grambsch and Therneau, 1994) is widely used and

implemented in statistical packages for Cox proportional hazard analysis. For our analysis, we

use the built-in cox.zph function in the survival package in R.

Ideally, to test if we need to stratify on the level of organizations, we should include the

full set of organization dummies in a Cox model fit and determine whether the PH assumption is

satisfied for each organization dummy. Given that our sample has 70,092 organizations, running

Cox regressions with many variables is computationally challenging. We, therefore, test one

organization dummy at a time. We run a Cox regression with a single organization dummy at a

time and test whether the PH assumption is satisfied for that dummy. Suppose the p-value of

that test is smaller than the 0.1 thresholds. In that case, we can reject at a 10% significance the

hypothesis that the hazard function for that organization is proportional to the hazard function for

other organizations.

We perform model fitting and testing of the PH assumption for a random 5% sample of

our 70,092 organizations. Overall, we find that 1.7% of organization dummies have p-values

smaller than 0.01, 7.8% have p-values smaller than 0.05, and 15.0% have p-values smaller than

0.1. We plot the distribution of p-values in Figure A3. It is visually evident that a substantial

proportion of organization dummies do not satisfy the PH assumption. To control for

organization effects in Cox regressions, we stratify by the organization.

We note that there are many approaches for model selection based on the likelihood of

nested and non-nested Cox models, such as the likelihood ratio test, the Akaike information

criterion, and so on (Fine, 2002). These approaches are inappropriate for deciding whether a

 65

stratified Cox model should be preferred over an unstratified one. The reason is that a stratified

Cox model maximizes a different partial likelihood function than an unstratified Cox model. For

example, for a standard unstratified Cox model without time-varying covariates, the partial

likelihood function the estimation procedure maximizes is

𝐿)(𝒃) = ∏ g 89:+,!-$!&⋯&,&-$&/
∑ 89:+,!-*!&⋯&,&-*&/*∈,-.$/

h
<$

! ,

where 𝑑! is the event, 𝑡! is the survival time of individual 𝑖, and 𝑅(𝑡!) = {𝑘: 𝑡= > 𝑡!} is the risk

set at time 𝑡!.

For a Cox model stratified at level 𝑙 and without time-varying covariates, the partial

likelihood function the estimation procedure maximizes is

𝐿)(𝒃) = ∏ ∏ g 89:+,!-$!&⋯&,&-$&/
∑ 89:+,!-*!&⋯&,&-*&/*∈,0-.$/

h
<$

!∈?0@ ,

where 𝐴@ is the set of individuals in stratum 𝑙, and 𝑅@(𝑡!) is the risk set for individuals in stratum

𝑙. When the number of strata equals 1, this likelihood function reduces to the likelihood function

for the unstratified model. When the number of strata is greater than 1, since the denominators in

this likelihood function are summed over a subset of the sample of individuals and are smaller,

this likelihood is mechanically larger than the likelihood for the unstratified model at any given 𝑏

and 𝑋.

 66

Figure A2 Distribution of p-values of tests of proportional hazards (PH) assumption

Notes: We fit Cox regressions with one organization dummy at a time for a random 5%

sample of our sample of 70,092 firms. We then test whether the organization dummy satisfies the

PH assumption. 3,505 model fits correspond to 3,505 unique organizations in that 5% sample.

The figure plots the distribution of the p-values from the PH assumption tests.

 67

Appendix A4. Robustness to Excluding OS Specific
Vulnerabilities

In the following tables, we drop Apache vulnerabilities that exclusively impact a specific

operating system. For the sequential logit regressions, we exclude event windows around the

releases of fixes to operating system-specific vulnerabilities. For the survival analysis, we

exclude operating system-specific vulnerabilities in the construction of the ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!"

variable.

Table A3 Sequential logit regressions of cross-sectional determinants of user decisions

 Sequential logit regression Sequential logit regression
 (1) (2) (3) (4)
 DN/DS vs FC DN vs DS DN/DS vs FC DN vs DS

𝑖𝑛𝑓𝑟𝑒𝑞𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! 0.152*** 0.188*** 0.135* 0.0392
 (0.0411) (0.0461) (0.0780) (0.0757)
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! -0.236*** -0.105*** -0.210** -0.244***
 (0.0449) (0.0393) (0.0999) (0.0802)
𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡! 0.0346** 0.00928 0.0115 0.00201
 (0.0171) (0.0185) (0.0333) (0.0306)
𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒! -0.000832 0.00164 -0.00471 0.00114
 (0.00940) (0.00737) (0.0131) (0.0136)
𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!# -0.0720 0.0962 -0.0704 0.0389
 (0.0848) (0.0942) (0.119) (0.129)
𝑙𝑜𝑔𝑃𝐶𝑠! 0.0438 0.0269 0.0176 0.0656
 (0.0307) (0.0299) (0.0575) (0.0669)
𝐼𝑇𝑆𝑡𝑎𝑓𝑓𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦! -0.0115 -0.0165 0.00920 -0.0224
 (0.0243) (0.0293) (0.0364) (0.0421)
𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡! -0.0330 -0.0667* 0.0205 -0.0428
 (0.0446) (0.0406) (0.0967) (0.0844)
𝑙𝑜𝑔𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! 0.0359 0.0747 -0.0333 0.0215
 (0.0445) (0.0454) (0.0866) (0.0868)
ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! 0.118** -0.0262 -0.00695 0.0124
 (0.0566) (0.0488) (0.0881) (0.0825)
𝑐𝑙𝑜𝑢𝑑!" -0.213* -0.579*** -0.183 -0.545***
 (0.124) (0.0958) (0.208) (0.171)
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 0.0134 0.0340 -0.0410 0.0324
 (0.0471) (0.0492) (0.0714) (0.0657)
𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 0.0365 0.0226 0.0567* 0.0279
 (0.0271) (0.0242) (0.0323) (0.0294)
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" 0.00192 0.0528** -0.000916 0.0205

 68

 (0.0222) (0.0211) (0.0343) (0.0381)
𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" -0.0131 0.0203*** 0.0244* 0.0397***
 (0.0128) (0.00725) (0.0142) (0.0130)

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 1 & 0.175 0.172
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0 (0.180) (0.160)

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 0 & 0.0486 0.0251
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0 (0.0731) (0.0679)

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! 0.0136 0.0227
 (0.0223) (0.0191)
𝑡𝑒𝑐ℎ𝑠! -0.00647 -0.0141
 (0.0145) (0.0150)
𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠! -0.00537 -0.0154

 (0.0278) (0.0267)
Constant 1.661*** 1.287*** 2.214*** 0.832**

 (0.132) (0.145) (0.350) (0.341)
State dummies Y Y Y Y
Industry dummies Y Y Y Y

Observations 99,447 99,447 23,702 23,702

Notes: Same as those for Table 3.

Table A4 Cox proportional hazards analysis of updating decisions

 Cox proportional hazards regressions

 Public firms
 Stratified Stratified Stratified Stratified
 (1) (2) (3) (4) (5) (6)

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" -0.323*** -0.381*** -0.092*** -0.153*** -0.005 0.301
 (0.005) (0.014) (0.007) (0.009) (0.050) (0.240)

𝑤𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑒𝑀𝑜𝑛𝑡ℎ𝑠𝑆𝑖𝑛𝑐𝑒𝐴𝑑𝑑𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔!" 0.144***
 (0.009)

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" × ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! -0.061 0.038
 (0.037) (0.172)

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" × 𝑐𝑙𝑜𝑢𝑑!" 0.186* 0.659*
 (0.086) (0.358)

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" × 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! -0.004 -0.032
 (0.005) (0.023)

 69

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" ×𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠! -0.009 -0.043
 (0.008) (0.042)
𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" 0.319*** 0.361*** 0.732*** 0.845*** 0.662*** 0.564*

 (0.008) (0.024) (0.009) (0.010) (0.068) (0.317)

𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!" 0.051***
 (0.005)

𝑛𝑜𝑛𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!" -0.019***
 (0.002)

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠!" -0.006***
 (0.000)

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!"
× ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010!

 0.154*** 0.742***
 (0.049) (0.225)

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" × 𝑐𝑙𝑜𝑢𝑑!" 0.234 0.156
 (0.136) (0.453)

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" × 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! -0.008 -0.055
 (0.006) (0.034)

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!"

×𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠!
 0.021* 0.114*

 (0.011) (0.063)
𝑛𝑒𝑤𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" 0.073*** -0.065 0.367*** 0.412*** 0.270*** 0.179
 (0.013) (0.042) (0.014) (0.015) (0.039) (0.198)
𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! -0.115***

 (0.015)

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! 0.188***
 (0.015)

𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡! -0.007
 (0.006)

𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒! 0.003
 (0.003)

𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐! -0.057
 (0.028)

ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! 0.055***
 (0.014)

𝑐𝑙𝑜𝑢𝑑!" -0.010 -0.504*** -0.417
 (0.034) (0.132) (0.459)

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! -0.013**
 (0.004)

𝑡𝑒𝑐ℎ𝑠! 0.004
 (0.003)

𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠! 0.013**
 (0.004)

 70

𝑙𝑜𝑔𝑃𝐶𝑠! -0.016
 (0.010)

𝐼𝑇𝑆𝑡𝑎𝑓𝑓𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦! 0.014
 (0.007)

𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡! -0.010
 (0.019)

𝑙𝑜𝑔𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! 0.009
 (0.019)

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" -0.040***
 (0.008)

𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" -0.010***
 (0.002)

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" -0.029***
 (0.003)

𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" -0.013***
 (0.001)

𝑙𝑜𝑔𝐶𝑎𝑝𝑥𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!" -0.038
 (0.029)

𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!" 0.033
 (0.027)

𝑙𝑜𝑔𝑇𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑒𝑡𝑠𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!" -0.247**
 (0.078)

𝑙𝑜𝑔𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!" -0.027
 (0.039)

𝑙𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!" 0.000
 (0.003)

𝑙𝑜𝑔𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!" 0.154
 (0.312)

State dummies N Y N N N N
Industry dummies N Y N N N N
Observations 3,104,455 548,959 3,104,455 3,049,753 665,360 44,955

Notes: Same as those for Table 4

Appendix A4. Robustness to Excluding Low Exploitability
Vulnerabilities

In the following table, we drop Apache vulnerabilities that are scored by NIST as not

having an exploitability score of 10 out of 10. For the sequential logit regressions, we exclude

event windows around the releases of fixes to not highly exploitable vulnerabilities. For the

 71

survival analysis, we exclude not higly exploitable vulnerabilities in the construction of the

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" variable.

Table A5 Sequential logit regressions of cross-sectional determinants of user decisions

 Sequential logit regression Sequential logit regression
 (1) (2) (3) (4)
 DN/DS vs FC DN vs DS DN/DS vs FC DN vs DS

𝑖𝑛𝑓𝑟𝑒𝑞𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! 0.179*** 0.165*** 0.213** 0.0519
 (0.0526) (0.0522) (0.0937) (0.0883)
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! -0.232*** -0.108** -0.110 -0.165**
 (0.0560) (0.0436) (0.0969) (0.0822)
𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡! 0.0437** 0.0125 0.0461 0.0363
 (0.0201) (0.0267) (0.0394) (0.0358)
𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒! -0.00574 -0.00397 -0.0140 -0.0136
 (0.0111) (0.00960) (0.0176) (0.0126)
𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐!# -0.0340 0.0222 0.0349 -0.0187
 (0.0950) (0.0915) (0.150) (0.133)
𝑙𝑜𝑔𝑃𝐶𝑠! 0.0306 -0.00861 -0.0377 0.0514
 (0.0292) (0.0412) (0.0581) (0.0658)
𝐼𝑇𝑆𝑡𝑎𝑓𝑓𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦! -0.0103 0.0168 0.0163 -0.0211
 (0.0275) (0.0298) (0.0407) (0.0407)
𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡! -0.0590 -0.0566 0.108 0.0141
 (0.0481) (0.0443) (0.105) (0.0987)
𝑙𝑜𝑔𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! 0.0622 0.0650 -0.118 -0.0295
 (0.0494) (0.0438) (0.0998) (0.102)
ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! 0.230*** -0.00582 0.0468 0.0404
 (0.0733) (0.0555) (0.0956) (0.0963)
𝑐𝑙𝑜𝑢𝑑!" 0.613* -0.124 0.514 0.129
 (0.364) (0.273) (0.539) (0.398)
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" -0.170*** 0.0129 -0.221* 0.0689
 (0.0553) (0.0654) (0.115) (0.101)
𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" 0.0850** 0.0378 0.101** 0.0263
 (0.0391) (0.0248) (0.0453) (0.0349)
𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" -0.0844** 0.0460 0.0452 0.0732
 (0.0415) (0.0344) (0.0828) (0.0524)
𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" 0.0120 0.0259*** 0.0173 0.0326**
 (0.0130) (0.00961) (0.0202) (0.0145)

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 1 & 0.0703 0.162
𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0 (0.233) (0.223)

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑! = 0 & 0.125 -0.0272

 72

𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑀𝑖𝑠𝑠𝑖𝑛𝑔! = 0 (0.0842) (0.0773)

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! 0.00923 0.0213
 (0.0221) (0.0210)
𝑡𝑒𝑐ℎ𝑠! -0.00647 -0.0134
 (0.0148) (0.0169)
𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠! 0.0154 -0.00888

 (0.0247) (0.0297)
Constant 1.433*** 1.540*** 1.853*** 0.856**

 (0.137) (0.137) (0.338) (0.387)
State dummies Y Y Y Y
Industry dummies Y Y Y Y

Observations 70,464 70,464 18,198 18,198 70,464

Notes: Same as those for Table 3.

Table A6 Cox proportional hazards analysis of updating decisions

 Cox proportional hazards regressions

 Public firms
 Stratified Stratified Stratified Stratified
 (1) (2) (3) (4) (5) (6)

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" -0.163*** -0.258*** 0.080*** 0.021** 0.207*** 0.264
 (0.005) (0.014) (0.007) (0.009) (0.049) (0.239)

𝑤𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑒𝑀𝑜𝑛𝑡ℎ𝑠𝑆𝑖𝑛𝑐𝑒𝐴𝑑𝑑𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔!" 0.226***
 (0.009)

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" × ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! -0.069* 0.191
 (0.036) (0.174)

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" × 𝑐𝑙𝑜𝑢𝑑!" -0.088 -0.507
 (0.105) (0.503)

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" × 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! -0.005 -0.009
 (0.005) (0.023)

ℎ𝑎𝑠𝑆𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠!" ×𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠! -0.022** -0.082*
 (0.008) (0.041)
𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" 0.252*** 0.305*** 0.680*** 0.800*** 0.598*** 0.581*

 (0.008) (0.024) (0.009) (0.010) (0.068) (0.318)

𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!" 0.007
 (0.005)
 -0.012***

𝑛𝑜𝑛𝑠𝑒𝑣𝑒𝑟𝑒𝐵𝑢𝑔𝑠𝐹𝑖𝑥𝑒𝑑!" (0.002)

 73

 -0.007***
 (0.000)

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠!" 0.007
 (0.005)

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!"
× ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010!

 0.158*** 0.693***
 (0.049) (0.227)

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" × 𝑐𝑙𝑜𝑢𝑑!" 0.315** 0.364
 (0.134) (0.447)

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" × 𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! -0.008 -0.064*
 (0.006) (0.034)

𝑛𝑒𝑤𝑀𝑖𝑛𝑜𝑟𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!"

×𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠!
 0.025** 0.130**

 (0.011) (0.063)
𝑛𝑒𝑤𝑉𝑒𝑟𝑠𝑖𝑜𝑛𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒!" 0.078*** -0.061 0.370*** 0.422*** 0.273*** 0.185
 (0.013) (0.042) (0.014) (0.015) (0.039) (0.198)
𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! -0.120***

 (0.015)

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟! 0.184***
 (0.015)

𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡! -0.008
 (0.006)

𝑙𝑜𝑔𝑅𝑒𝑣𝑒𝑛𝑢𝑒! 0.003
 (0.003)

𝑖𝑠𝑃𝑢𝑏𝑙𝑖𝑐! -0.057
 (0.028)

ℎ𝑎𝑠𝐴𝑙𝑒𝑥𝑎𝑅𝑎𝑛𝑘2010! 0.055***
 (0.014)

𝑐𝑙𝑜𝑢𝑑!" -0.008 -0.456*** -0.239
 (0.034) (0.131) (0.458)

𝑡𝑒𝑐ℎ𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠! -0.013**
 (0.004)

𝑡𝑒𝑐ℎ𝑠! 0.004
 (0.003)

𝑚𝑜𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑐ℎ𝑠! 0.012**
 (0.004)

𝑙𝑜𝑔𝑃𝐶𝑠! -0.017
 (0.010)

𝐼𝑇𝑆𝑡𝑎𝑓𝑓𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦! 0.015
 (0.008)

𝑙𝑜𝑔𝐼𝑇𝐵𝑢𝑑𝑔𝑒𝑡! -0.010
 (0.019)

 74

𝑙𝑜𝑔𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝐵𝑢𝑑𝑔𝑒𝑡! 0.009
 (0.019)

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" -0.038***
 (0.008)

𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝑆𝑡𝑎𝑡𝑒!" -0.012***
 (0.002)

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" -0.027***
 (0.003)

𝑙𝑜𝑔𝑁𝑜𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑟𝑒𝑎𝑐ℎ𝐼𝑛𝑑!" -0.013***
 (0.001)

𝑙𝑜𝑔𝐶𝑎𝑝𝑥𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!" 0.039
 (0.029)

𝑙𝑜𝑔𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!" 0.037
 (0.027)

𝑙𝑜𝑔𝑇𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑒𝑡𝑠𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!" -0.248**
 (0.078)

𝑙𝑜𝑔𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!" -0.028
 (0.040)

𝑙𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!" 0.000
 (0.003)

𝑙𝑜𝑔𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝐶𝑜𝑚𝑝𝑢𝑠𝑡𝑎𝑡!" 0.151
 (0.315)

State dummies N Y N N N N
Industry dummies N Y N N N N
Observations 3,104,455 548,959 3,104,455 3,049,753 665,360 44,955

Notes: Same as those for Table 4.

